Skip to main content
Log in

Stability inequalities and universal Schubert calculus of rank 2

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The goal of the paper is to introduce a version of Schubert calculus for each dihedral reflection group W. That is, to each “sufficiently rich” spherical building Y of type W we associate a certain cohomology theory \( H_{BK}^*(Y) \) and verify that, first, it depends only on W (i.e., all such buildings are “homotopy equivalent”), and second, \( H_{BK}^*(Y) \) is the associated graded of the coinvariant algebra of W under certain filtration. We also construct the dual homology “pre-ring” on Y. The convex “stability” cones in \( {\left( {{\mathbb{R}^2}} \right)^m} \) defined via these (co)homology theories of Y are then shown to solve the problem of classifying weighted semistable m-tuples on Y in the sense of [KLM1]; equivalently, they are cut out by the generalized triangle inequalities for thick Euclidean buildings with the Tits boundary Y. The independence of the (co)homology theory of Y refines the result of [KLM2], which asserted that the Stability Cone depends on W rather than on Y. Quite remarkably, the cohomology ring \( H_{BK}^*(Y) \) is obtained from a certain universal algebra A t by a kind of “crystal limit” that has been previously introduced by Belkale–Kumar for the cohomology of ag varieties and Grassmannians. Another degeneration of A t leads to the homology theory H *(Y).

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. W. Ballmann, Lectures on Spaces of Nonpositive Curvature, DMV Seminar, Vol. 25, Birkhauser Verlag, Basel, 1995.

    MATH  Google Scholar 

  2. A. Berenstein, M. Kapovich, Affine buildings for dihedral groups, Geometria Dedicata, to appear.

  3. P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), no. 1, 185–228.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Berenstein, R. Sjamaar, Projections of coadjoint orbits, moment polytopes, and the Hilbert–Mumford criterion, J. Amer. Math. Soc. 13 (2000), 433–466.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bridson, A. Haefliger, Metric Spaces of Nonpositive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  6. C. Ramos-Cuevas, Generalized triangle inequalities in thick Euclidean buildings of rank 2, preprint, arXiv:1009.1316v1, 2010.

  7. M. Funk, K. Strambach, Free constructions, in: Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 739–780.

  8. E. Hille, R. Phillips, Functional Analysis and Semi-Groups, 3d printing of the revised edition of 1957, American Mathematical Society Colloquium Publications, Vol. XXXI, American Mathematical Society, Providence, RI, 1974. Russian transl.: Э. Хилле, Р. Филлипс, Функциональный анализ и полугруппы, ИЛ, М., 1962.

  9. H. Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, Vol. 54, Pitman, Boston, 1982.

    MATH  Google Scholar 

  10. M. Kapovich, B. Leeb, J. Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Diff. Geom. 81 (2009), 297–354.

    MathSciNet  MATH  Google Scholar 

  11. M. Kapovich, B. Leeb, J. Millson, Polygons in buildings and their refined side lengths, Geom. Funct. Anal. 19 (2009), no. 4, 1081–1100.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Kapovich, B. Leeb, J. Millson, The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra, Memoirs of AMS, Vol. 192, 2008.

  13. N. Kitchloo, On the topology of Kac–Moody groups, preprint, arXiv:0810.0851, 2008.

  14. B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math. Inst. Hautes Études Sci. 86 (1997), 115–197.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. 4 (1998), 419–445.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Kostant, S. Kumar, The nil Hecke ring and the cohomology of G/P for a Kac–Moody group G, Adv. Math. 62 (1986), 187–237.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Kramer, K. Tent, Algebraic polygons, J. Algebra 182 (1996), no. 2, 435–447.

    Article  MathSciNet  MATH  Google Scholar 

  18. U. Lang, B. Pavlović, V. Schroeder, Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal. 10 (2000), no. 6, 1527–1553.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Markl, S. Snider, J. Stasheff, Operads in Algebra, Topology and Physics, Math. Surveys Monogr., Vol. 96, Amer. Math. Soc., Providence, RI, 2002.

    MATH  Google Scholar 

  20. A. Parreau, Immeubles affines: construction par les normes et étude des isométries, in: Crystallographic Groups and their Generalizations’ (Kortrijk, 1999), Contemp. Math., Vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 263–302.

  21. N. Ressayre, Geometric invariant theory and the generalized eigenvalue problem, Invent. Math. 180 (2010), no. 2, p. 389–441.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Ronan, Lectures on Buildings, Perspectives in Mathematics, Vol. 7, Academic Press, 1989.

  23. K. Tent, Very homogeneous generalized n-gons of finite Morley rank, J. London Math. Soc. (2) 62 (2000), no. 1, 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math. 43 (1977), no. 3, 283–295.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Weiss, Structure of Affine Buildings, Annals of Math. Studies, Vol. 168, Princeton University Press, Princeton, NJ, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Berenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berenstein, A., Kapovich, M. Stability inequalities and universal Schubert calculus of rank 2. Transformation Groups 16, 955–1007 (2011). https://doi.org/10.1007/s00031-011-9161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9161-6

Keywords

Navigation