Skip to main content
Log in

Slices for biparabolics of index 1

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( \mathfrak{a} \) be an algebraic Lie subalgebra of a simple Lie algebra \( \mathfrak{g} \) with index \( \mathfrak{a} \) ≤ rank \( \mathfrak{g} \). Let \( Y\left( \mathfrak{a} \right) \) denote the algebra of \( \mathfrak{a} \) invariant polynomial functions on \( {\mathfrak{a}^*} \). An algebraic slice for \( \mathfrak{a} \) is an affine subspace η + V with \( \eta \in {\mathfrak{a}^*} \) and \( V \subset {\mathfrak{a}^*} \) subspace of dimension index \( \mathfrak{a} \) such that restriction of function induces an isomorphism of \( Y\left( \mathfrak{a} \right) \) onto the algebra R[η + V] of regular functions on η + V. Slices have been obtained in a number of cases through the construction of an adapted pair (h, η) in which \( h \in \mathfrak{a} \) is ad-semisimple, η is a regular element of \( {\mathfrak{a}^*} \) which is an eigenvector for h of eigenvalue minus one and V is an h stable complement to \( \left( {{\text{ad}}\;\mathfrak{a}} \right)\eta \) in \( {\mathfrak{a}^*} \). The classical case is for \( \mathfrak{g} \) semisimple [16], [17]. Yet rather recently many other cases have been provided; for example, if \( \mathfrak{g} \) is of type A and \( \mathfrak{a} \) is a “truncated biparabolic” [12] or a centralizer [13]. In some of these cases (in particular when the biparabolic is a Borel subalgebra) it was found [13], [14], that η could be taken to be the restriction of a regular nilpotent element in \( \mathfrak{g} \). Moreover, this calculation suggested [13] how to construct slices outside type A when no adapted pair exists. This article makes a first step in taking these ideas further. Specifically, let \( \mathfrak{a} \) be a truncated biparabolic of index one. (This only arises if \( \mathfrak{g} \) is of type A and \( \mathfrak{a} \) is the derived algebra of a parabolic subalgebra whose Levi factor has just two blocks whose sizes are coprime.) In this case it is shown that the second member of an adapted pair (h, η) for \( \mathfrak{a} \) is the restriction of a particularly carefully chosen regular nilpotent element of \( \mathfrak{g} \). A by-product of our analysis is the construction of a map from the set of pairs of coprime integers to the set of all finite ordered sequences of ±1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel, Linear Algebraic Groups, 2nd ed., Springer-Verlag, New York, 1997.

    Google Scholar 

  2. N. Bourbaki, Groupes et Algèbres de Lie, Chaps. 4, 5 et 6, Masson, Paris, 1981.

    MATH  Google Scholar 

  3. J.-Y. Charbonnel, A. Moreau, The index of centralizers of elements of reductive Lie algebras, Doc. Math. 15 (2010), 387–421.

    MathSciNet  MATH  Google Scholar 

  4. J. Dixmier, Algèbres Enveloppantes, Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Paris, 1996.

    Google Scholar 

  5. F. Fauquant-Millet, A. Joseph, Semi-centre de l’algèbre enveloppante d’une sous-algèbre parabolique d’une algèbre de Lie semi-simple, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 155–191.

    MathSciNet  MATH  Google Scholar 

  6. F. Fauquant-Millet, A. Joseph, La somme des faux degrés—un mystère en théorie des invariants, Adv. in Math. 217 (2008), no. 4, 1476–1520.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. A. de Graaf, Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math. 11 (2008), 280–297.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras, II, J. Algebra 312 (2007), no. 1, 158–193.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Joseph, Parabolic actions in type A and their eigenslices, Transform. Groups 12 (2007), no. 3, 515–547.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Joseph, A slice theorem for truncated parabolics of index one and the Bezout equation, Bull. Sci. Math. 131 (2007), no. 3, 276–290.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Joseph, Invariants and slices for reductive and biparabolic coadjoint actions, Lecture Notes Weizmann 20/2/2007, revised 7/1/2010, available at http://www.wisdom.weizmann.ac.il/~gorelik/agrt.htm.

  12. A. Joseph, Slices for biparabolic coadjoint actions in type A, J. Algebra 319 (12) (2008), 5060–5100.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Joseph, Compatible adapted pairs and a common slice theorem for some centralizers, Transform. Groups 13 (2008), no. 3–4, 637–669.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Joseph, An algebraic slice in the coadjoint space of the Borel and the Coxeter element, Adv. in Math., to appear.

  15. A. Joseph, D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs, Transform. Groups 15 (2010), no. 4, 851–882.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Ooms, M. Van den Bergh, A degree inequality for Lie algebras with a regular Poisson semi-center, J. Algebra 323 (2010), no. 2, 305–322.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralizers in reductive Lie algebras, J. Algebra 313 (2007), no. 1, 343–391.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. L. Popov, Sections in invariant theory, in: The Sophus Lie Memorial Conference, Oslo, 1992, Scandinavian University Press, Oslo, 1994, pp. 315–361.

    Google Scholar 

  21. О. С. Якимова, Индекс централизаторов элементов в классических алгебрах Ли, Функц. анализ и его прилож 40 (2006), no. 1, 52–64, 96. Engl. transl.: O. S. Yakimova, The index of centralizers of elements in classical Lie algebras, Funct. Anal. Appl. 40 (2006), no. 1, 42–51.

    Article  MathSciNet  MATH  Google Scholar 

  22. O. S. Yakimova, A counterexample to Premet’s and Joseph’s conjectures, Bull. Lond. Math. Soc. 39 (2007), no. 5, 749–754.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Joseph.

Additional information

Work supported in part by Israel Science Foundation Grant, no. 710724. (Anthony Joseph)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, A., Fauquant-Millet, F. Slices for biparabolics of index 1. Transformation Groups 16, 1081–1113 (2011). https://doi.org/10.1007/s00031-011-9158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9158-1

AMS classication

Key words and phrases

Navigation