Skip to main content
Log in

On complex lie supergroups and split homogeneous supermanifolds

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

It is well known that the category of real Lie supergroups is equivalent to the category of the so-called (real) Harish-Chandra pairs, see [DM], [Kost], [Kosz]. That means that a Lie supergroup depends only on the underlying Lie group and its Lie superalgebra with certain compatibility conditions. More precisely, the structure sheaf of a Lie supergroup and the supergroup morphisms can be explicitly described in terms of the corresponding Lie superalgebra. In this paper we give a proof of this result in the complex-analytic case. Furthermore, if (G, \( \mathcal{O} \) G ) is a complex Lie supergroup and H ⊂ G is a closed Lie subgroup, i.e., it is a Lie subsupergroup of (G, \( \mathcal{O} \) G ) and its odd dimension is zero, we show that the corresponding homogeneous supermanifold (G/H, \( \mathcal{O} \) G/H ) is split. In particular, any complex Lie supergroup is a split supermanifold.

It is well known that a complex homogeneous supermanifold may be nonsplit (see, e.g., [OS1]). We find here necessary and sufficient conditions for a complex homogeneous supermanifold to be split.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Baguis, T. Stavracou, Normal Lie subsupergroups and non-abelian supercircles, Int. J. Math. Math. Sci. 30 (2002), no. 10, 581–591.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ф. A. Березин, Д. A. Лейтес, Сynepмногообразия, ДAH CCCP 224 (1975), no. 3, 505–508. Engl. transl.: F. A. Berezin, D. A. Leites, Supermanifolds, Sov. Math., Dokl. 16 (1975), 1218–1222.

  3. P. Deligne, J. W. Morgan, Notes on Supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: A Course for Mathematicians, Vols. 1 and 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 41–97.

  4. R. Fioresi, M. A. Lledo, V. S. Varadarajan, The Minkowski and conformal superspaces, J. Math. Phys. 48 (2007), no. 11, 113505, 27 pp.

    Article  MathSciNet  Google Scholar 

  5. P. Green, On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), no. 4, 587–590.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, in: Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Mathematics, Vol. 570, Springer-Verlag, Berlin, 1977, pp. 177–306.

  7. J. L. Koszul, Graded manifolds and graded Lie algebras, in: Proceeding of the International Meeting on Geometry and Physics (Bologna), Pitagora, 1982, pp. 71–84.

  8. C. LeBrun, Y. S. Poon, R O. Jr. Wells, Projective embeddings of complex supermanifolds, Comm. Math. Phys. 126 (1990), no. 3, 433–452.

    Article  MATH  MathSciNet  Google Scholar 

  9. Д. A. Лейтес, Ваедение а теорию суnермногообразий, YMH 35 (1980), no. 1(211), 3–57, 255. Engl. transl.: D. A. Leites, Introduction to the theory of super-manifolds, Russian Math. Surveys 35 (1980), 1–64.

  10. Yu. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren der Mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1997.

  11. V. Molotkov, Infinite-dimensional \( \mathbb{Z}_2^k \) -supermanifolds, preprint IC/84/183, 1984, http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?198506284.

  12. A. L. Onishchik, Flag supermanifolds, their automorphisms and deformations, in: The Sophus Lie Memorial Conference (Oslo, 1992), Scandinavian University Press, Oslo, 1994, pp. 289–302.

  13. A. L. Onishchik, Homogeneous supermanifolds over Grassmannians, J. Algebra 313 (2007), no. 1, 320–342.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. L. Onishchik, Nonsplit supermanifolds associated with the cotangent bundle, Université de Poitiers, Dèpartement de Mathematiques, no. 109, Poitiers, 1997.

  15. A. L. Onishchik, A. A. Serov, Vector fields and deformations of isotropic super-Grassmannians of maximal type, in: Lie Groups and Lie Algebras: E.B. Dynkin's Seminar, AMS Translations, Ser. 2, Vol. 169, Amer. Math. Soc., Providence, RI. 1995, pp. 75–90.

  16. A. L. Onishchik, A. A. Serov, On isotropic super-Grassmannians of maximal type associated with an odd bilinear form, E. Schrödinger Inst. for Math. Phys., preprint no. 340, Vienna, 1996.

  17. И. Б. Пенков, И. A. Скорняков, Проективность т D-аффиносиь флаговых суnермногообразий, YMH 40 (1985), no. 1(241), 211–212. Engl. transl.: I. B. Penkov, I. A. Skornyakov, Projectivity and D-affineness of flag supermanifolds, Russian Math. Surveys 40, (1987), 233–234.

  18. M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics, Vol. 716, Springer-Verlag, Berlin, 1979.

    MATH  Google Scholar 

  19. M. S. Tsalenko, E. G. Shulgeifer, Foundations of the Theory of Categories, Nauka, Moscow, 1974 (in Russian).

  20. V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes in Mathematics, Vol. 11, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2004.

  21. E. G. Vishnyakova, On the structure of complex homogeneous supermanifolds, arXiv:0811.2581, 2008.

  22. D. B. Westra, Superrings and supergroups, PhD thesis, Universität Wien, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Vishnyakova.

Additional information

Supported by SFB | TR12 and by the Russian Foundation for Basic Research (grant no. 07-01-00230).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishnyakova, E.G. On complex lie supergroups and split homogeneous supermanifolds. Transformation Groups 16, 265–285 (2011). https://doi.org/10.1007/s00031-010-9114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9114-5

Keywords

Navigation