Skip to main content
Log in

Real loci of based loop groups

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let (G, K) be a Riemannian symmetric pair of maximal rank, where G is a compact simply connected Lie group and K is the fixed point set of an involutive automorphism σ. This induces an involutive automorphism τ of the based loop space Ω(G). There exists a maximal torus TG such that the canonical action of T × S 1 on Ω(G) is compatible with τ (in the sense of Duistermaat). This allows us to formulate and prove a version of Duistermaat’s convexity theorem. Namely, the images of Ω(G) and Ω(G)τ (fixed point set of τ) under the T × S 1 moment map on Ω(G) are equal. The space Ω(G)τ is homotopy equivalent to the loop space Ω(G/K) of the Riemannian symmetric space G/K. We prove a stronger form of a result of Bott and Samelson which relates the cohomology rings with coefficients in \( {\mathbb{Z}_2} \) of Ω(G) and Ω(G/K). Namely, the two cohomology rings are isomorphic, by a degree-halving isomorphism (Bott and Samelson [BS] had proved that the Betti numbers are equal). A version of this theorem involving equivariant cohomology is also proved. The proof uses the notion of conjugation space in the sense of Hausmann, Holm, and Puppe [HHP].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham, J. E. Marsden, T. S. Raţiu, Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences, Vol. 75, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  2. M. F. Atiyah, A. N. Pressley, Convexity and loop groups, in: Arithmetic and Geometry: Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, Vol. II: Geometry, Birkhäuser, Boston, 1983.

    Google Scholar 

  3. A. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 10, Springer-Verlag, Berlin, 1987. Russian transl.: А. Бессе, Многообразия Эйншmейна, тт. 1 и 2, Мир, M., 1990.

    MATH  Google Scholar 

  4. D. Biss, V. Guillemin, T. Holm, The mod 2 equivariant cohomology of real loci, Adv. Math. 185 (2004), 370–399.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Bott, H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029.

    Article  MathSciNet  Google Scholar 

  6. L. Conlon, Variationally completeness and K-transversal domains, J. Differential Geom. 5 (1971), 135–147.

    MATH  MathSciNet  Google Scholar 

  7. J. J. Duistermaat, Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution, Trans. Amer. Math. Soc. 275 (1983), 417–429.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Franz, V. Puppe, Steenrod squares on conjugation spaces, C. R. Math. Acad. Sci. Paris 342 (2006), no. 3, 187–190.

    MATH  MathSciNet  Google Scholar 

  9. W. Fulton, J. Harris, Representation Theory — A First Course, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 2004.

    Google Scholar 

  10. M. Harada, A. Henriques, T. Holm, Computation of generalized equivariant cohomologies of Kac–Moody flag varieties, Adv. Math. 197 (2005), 198–221.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-C. Hausmann, T. Holm, V. Puppe, Conjugation spaces, Algebr. Geom. Topol. 5 (2005), 923–964.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  13. R. R. Kocherlakota, Integral homology of real flag manifolds and loop spaces of symmetric spaces, Adv. Math. 110 (1995), 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  14. O. Loos, Symmetric Spaces II: Compact Spaces and Classiffication, Mathematics Lecture Notes Series, W. A. Benjamin, New York, 1969.

    Google Scholar 

  15. S. A. Mitchell, Quillen’s theorem on buildings and the loops on a symmetric space, Enseign. Math. 34 (1988), 123–166.

    MATH  MathSciNet  Google Scholar 

  16. L. O’Shea, R. Sjamaar, Moment maps and Riemannian symmetric pairs, Math. Ann. 317 (2000), no. 2, 415–457.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. S. Palais, C.-L. Terng, Critical Point Theory and Submanifold Geometry, Lecture Notes in Mathematics, Vol. 1353, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  18. A. Pressley, G. Segal, Loop Groups, Clarendon Press, Oxford, 1986. Russian transl.: Э. Прессли, Г. Сигал, Группы пеmель, Мир, M., 1990.

    MATH  Google Scholar 

  19. C.-L. Terng, Proper Fredholm submanifolds of Hilbert spaces, J. Differential Geom. 29 (1989), 9–47.

    MATH  MathSciNet  Google Scholar 

  20. C.-L. Terng, Variational completeness and infinite dimensional geometry, in: Geometry and Topology of Submanifolds, Vol. III, World Scientific, Singapore, 1991, pp. 279–293.

    Google Scholar 

  21. C.-L. Terng, Convexity theorem for infinite-dimensional isoparametric submanifolds, Invent. Math. 112 (1993), 9–22.

    Article  MATH  MathSciNet  Google Scholar 

  22. C.-L. Terng, Polar actions on Hilbert spaces, J. Geom. Anal. 5 (1995), 129–150.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa C. Jeffrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffrey, L.C., Mare, AL. Real loci of based loop groups. Transformation Groups 15, 134–153 (2010). https://doi.org/10.1007/s00031-010-9075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9075-8

Keywords

Navigation