Skip to main content
Log in

The Cohen–Macaulay property of separating invariants of finite groups

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In the case of finite groups, a separating algebra is a subalgebra of the ring of invariants which separates the orbits. Although separating algebras are often better behaved than the ring of invariants, we show that many of the criteria which imply the ring of invariants is non-Cohen–Macaulay actually imply that no graded separating algebra is Cohen–Macaulay. For example, we show that, over a field of positive characteristic p, given sufficiently many copies of a faithful modular representation, no graded separating algebra is Cohen–Macaulay. Furthermore, we show that, for a p-group, the existence of a Cohen–Macaulay graded separating algebra implies the group is generated by bireections. Additionally, we give an example which shows that Cohen–Macaulay separating algebras can occur when the ring of invariants is not Cohen–Macaulay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Benson, Polynomial Invariants of Finite Groups, London Mathematical Society Lecture Note Series, Vol. 190, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  2. D. J. Benson, Representations and Cohomology. I, Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Studies in Advanced Mathematics, Vol. 30, 2nd ed., Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  3. D. J. Benson, Representations and Cohomology. II, Cohomology of Groups and Modules, Cambridge Studies in Advanced Mathematics, Vol. 31, 2nd ed., Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  4. W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  6. H. E. A. Campbell, I. P. Hughes, G. Kemper, R. J. Shank, D. L. Wehlau, Depth of modular invariant rings, Transform. Groups 5 (2000), no. 1, 21–34.

    Article  MathSciNet  Google Scholar 

  7. S. B. Conlon, Certain representation algebras, J. Aust. Math. Soc. 5 (1965), 83–99.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Derksen, G. Kemper, Computational Invariant Theory, Encyclopaedia of Mathematical Sciences, Vol. 130, Subseries Invariant Theory and Algebraic Transformation Groups, Vol. I, Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  9. H. Derksen, G. Kemper, Computing invariants of algebraic groups in arbitrary characteristic, Adv. Math. 217 (2008), no. 5, 2089–2129.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Domokos, Typical separating invariants Transform. Groups 12 (2007), no. 1, 49–63.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Draisma, G. Kemper, D. Wehlau, Polarization of separating invariants, Canad. J. Math. 60 (2008), no. 3, 556–571.

    MATH  MathSciNet  Google Scholar 

  12. E. Dufresne, Separating invariants, Ph.D. thesis, Kingston Ontario, 2008, http://hdl.handle.net/1974/1407.

  13. E. Dufresne, Separating invariants and finite reection groups, Adv. Math. 221 (2009), 1979–1989.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  15. J. Elmer, Symmetric algebras and the depth of invariant rings, Ph.D thesis, University of Kent, 2007, http://www.maths.abdn.ac.uk/~bensondj/papers/e/elmer/klein4new.dvi.

  16. J. Elmer, Associated primes for cohomology modules, Arch. Math. (Basel) 91 (2008), no. 6, 481–485.

    MATH  MathSciNet  Google Scholar 

  17. J. Elmer, P. Fleischmann, On the depth of modular invariant rings for the groups C p ×C p , in: Symmetry and Spaces, Progress in Mathematics, Vol. 278, Birkhäuser, Boston, 2010, pp. 45–63.

    Chapter  Google Scholar 

  18. L. Evens, The Cohomology of Groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991.

    MATH  Google Scholar 

  19. F. D. Grosshans, Vector invariants in arbitrary characteristic, Transform. Groups 12 (2007), no. 3, 499–514.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Hochster, J. A. Eagon, Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Kac, K.-i. Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. (N. S.) 6 (1982) no. 2, 221–223.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Kemper, On the Cohen–Macaulay property of modular invariant rings, J. Algebra 215 (1999), no. 1, 330–351.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Kemper, A characterization of linearly reductive groups by their invariants, Transform. Groups 5 (2000), no. 1, 85–92.

    Article  MathSciNet  Google Scholar 

  24. G. Kemper, Computing invariants of reductive groups in positive characteristic, Transform. Groups 8 (2003), no. 2, 159–176.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Kemper, Separating invariants, J. Symbolic Comput. 44 (2009), no. 9, 1212–1222.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 51, Tata Institute of Fundamental Research, Bombay, 1978.

    MATH  Google Scholar 

  27. W. van der Kallen, http://www.math.uu.nl/people/vdkallen/errbmod.

  28. W. van der Kallen, Lectures on Frobenius Splittings and B-Modules, published for the Tata Institute of Fundamental Research, Bombay, 1993. Notes by S. P. Inamdar.

  29. C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Dufresne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufresne, E., Elmer, J. & Kohls, M. The Cohen–Macaulay property of separating invariants of finite groups. Transformation Groups 14, 771–785 (2009). https://doi.org/10.1007/s00031-009-9072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-009-9072-y

Keywords

Navigation