Skip to main content
Log in

Cohomogeneity One Manifolds and Self-Maps of Nontrivial Degree

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We construct natural self-maps of compact cohomogeneity one manifolds and compute their degrees and Lefschetz numbers. On manifolds with simple cohomology rings this yields relations between the order of the Weyl group and the Euler characteristic of a principal orbit. As examples we determine all cohomogeneity one actions on irreducible Riemannian symmetric spaces of compact type that lead to self-maps of degree ≠ −1; 0; 1. We derive explicit formulas for new coordinate polynomial self-maps of the compact matrix groups SU(3), SU(4), and SO(2n). For SU(3) we determine precisely which integers can be realized as degrees of self-maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Alekseevsky, D. V. Alekseevsky, Riemannian G-manifolds with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993), 197–211.

    MATH  MathSciNet  Google Scholar 

  2. T. Asoh, Compact transformation groups on \( \mathbb{Z}_{2} \) -cohomology spaces with orbit of codimension 1, Hiroshima Math. J. 13 (1983), 647–652.

  3. G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York, 1972. Russian transl.: Г. Е. Бредон, Введение в теорию компактных групп преобразований, Hayкa, M., 1980.

  4. G. E. Bredon, Topology and Geometry, Graduate Texts in Mathematics, Vol. 139, Springer, New York, 1993.

    Google Scholar 

  5. A. Dold, H. Whitney, Classiffication of oriented sphere bundles over a 4-complex, Ann. Math. 69 (1959), 667–677.

    Article  MathSciNet  Google Scholar 

  6. H. Duan, S. Wang, The degree of maps between manifolds, Math. Z. 244 (2003), 67–89.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Grove, B. Wilking, W. Ziller, Positively curved cohomogeneity one manifolds and 3-Sasakian geometry, J. Different. Geom. 78 (2008), 33–111.

    MATH  MathSciNet  Google Scholar 

  8. C. Hoelscher, Classiffication of cohomogeneity one manifolds in low dimensions, Ph.D. thesis, University of Pennsylvania, Philadelphia, 2007.

  9. H. Hopf, Über den Rang geschlossener Liescher Gruppen, Comment. Math. Helv. 13 (1941), 119–143.

    Article  Google Scholar 

  10. H. Hopf, H. Samelson, Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen, Comment. Math. Helv. 13 (1941), 240–251.

    Article  MathSciNet  Google Scholar 

  11. K. Iwata, Classiffication of compact transformation groups on cohomology quaternion projective spaces with codimension one orbits, Osaka J. Math. 15 (1978), 475–508.

    MATH  MathSciNet  Google Scholar 

  12. K. Iwata, Compact transformation groups on rational cohomology Cayley projective planes, Tôhoku Math. J. 33 (1981), 429–442.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. M. James, J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres I, Proc. London Math. Soc. 4 (1954), 196–218.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Kollross, A classiffication of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2002), 571–612.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. S. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. 65 (1957), 447–455; Errata, ibid. 66, 589.

    Article  MathSciNet  Google Scholar 

  16. W. D. Neumann, “3-dimensional G-manifolds with 2-dimensional orbits”, in: Proc. Conf. on Transformation Groups (New Orleans, LA., 1967), Springer-Verlag, New York, 1968, pp. 220–222.

    Google Scholar 

  17. J. Parker, 4-dimensional G-manifolds with 3-dimensional orbits, Pacific J. Math. 125 (1986), 187–204.

    MATH  MathSciNet  Google Scholar 

  18. F. Uchida, Classiffication of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japan J. Math. 3 (1977), 141–189.

    MathSciNet  Google Scholar 

  19. W. Ziller, Fatness Revisited, unpublished lecture notes, University of Pennsylvania, Philadeliphia, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Püttmann.

Additional information

Supported by a DFG Heisenberg scholarship and DFG priority program SPP 1154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Püttmann, T. Cohomogeneity One Manifolds and Self-Maps of Nontrivial Degree. Transformation Groups 14, 225–247 (2009). https://doi.org/10.1007/s00031-008-9037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-008-9037-6

Keywords

Navigation