Skip to main content
Log in

Variational theory for the resonant T-curvature equation

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the resonant prescribed  T-curvature problem on a compact  4-dimensional Riemannian manifold with boundary. We derive sharp energy and gradient estimates of the associated Euler-Lagrange functional to characterize the critical points at infinity of the associated variational problem under a non-degeneracy on a naturally associated Hamiltonian function. Using this, we derive a Morse type lemma at infinity around the critical points at infinity. Using the Morse lemma at infinity, we prove new existence results of Morse theoretical type. Combining the Morse lemma at infinity and the Liouville version of the Barycenter technique of Bahri–Coron (Commun Pure Appl Math 41–3:253–294, 1988) developed in Ndiaye (Adv Math 277(277):56–99, 2015), we prove new existence results under a topological hypothesis on the boundary of the underlying manifold, the selection map at infinity, and the entry and exit sets at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmedou, M., Kallel S., Ndiaye, C.B.: The resonant boundary Q-curvature problem and boundary-weighted barycenters. arXiv:1604.03745

  2. Ahmedou, M., Ndiaye, C.B.: Morse theory and the resonant \(Q\)-curvature problem. arxiv:1409.7919

  3. Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41–3, 253–294 (1988)

    Article  MathSciNet  Google Scholar 

  4. Bahri, A., Rabinowitz, P.: Periodic solutions of Hamiltonian systems of \(3\)-body. Ann. Inst. Poincaré, Anal. Non Linéaire 8, 561–649 (1991)

    Article  MathSciNet  Google Scholar 

  5. Branson, T.P., Oersted, B.: Explicit functional determinants in four dimensions. Proc. Amer. Math. Soc. 113(3), 669–682 (1991)

    Article  MathSciNet  Google Scholar 

  6. Chang, S.Y.A., Qing, J., Yang, P.C.: On the Chern–Gauss–Bonnet integral for conformal metrics on \({ R}^{4}\). Duke Math. J. 03(3), 523–544 (2000)

    Google Scholar 

  7. Chang, S.Y.A., Qing, J.: The Zeta Functional Determinants on manifolds with boundary 1. The Formula. J. Funct. Anal. 147, 327–362 (1997)

    Article  MathSciNet  Google Scholar 

  8. Chang, S.Y.A., Qing, J.: The Zeta Functional Determinants on manifolds with boundary II. Extremal Metrics and Compactness of Isospectral Set. J. Funct. Anal. 147, 363–399 (1997)

    Article  MathSciNet  Google Scholar 

  9. Chang, S.Y.A., Qing, J., Yang, P.C.: Compactification of a class of conformally flat \(4\)-manifold. Invent. Math. 142–1, 65–93 (2000)

    Article  MathSciNet  Google Scholar 

  10. Chen, C.C., Lin, C.S.: Topological degree for a mean field equation on Riemann surfaces. Commun. Pure. Appl. Math 56–12, 1667–1727 (2003)

    Article  MathSciNet  Google Scholar 

  11. Djadli, Z., Malchiodi, A.: Existence of conformal metrics with constant \(Q\)-curvature. Ann. Math. (2) 168(3), 813–858 (2008)

    Article  MathSciNet  Google Scholar 

  12. Jin, T., Li, Y., Xiong, J.: The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369(1–2), 109–151 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kallel, S., Karoui, R.: Symmetric joins and weighted barycenters. Adv. Nonlinear Stud. 11, 117–143 (2011)

    Article  MathSciNet  Google Scholar 

  14. Li, Y., Xiong, J.: Compactness of conformal metrics with constant Q-curvature. I. Adv. Math. 345, 116–160 (2019)

    Article  MathSciNet  Google Scholar 

  15. Lin, C.S., Wei, J.: Sharp estimates for bubbling solutions of a fourth order mean field equation. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 6(4), 599–630 (2007)

    MathSciNet  Google Scholar 

  16. Lucia, M.: A deformation lemma with an application to a mean field equation. Topol. Methods Nonlinear Anal. 30(1), 113–138 (2007)

    MathSciNet  Google Scholar 

  17. Malchiodi, A.: Compactness of solutions to some geometric fourth-order equations. J. Reine Angew. Math. 594, 137–174 (2006)

    MathSciNet  Google Scholar 

  18. Malchiodi, A.: Morse theory and a scalar field equation on compact surfaces. Adv. Differ. Equ. 13, 1109–1129 (2008)

    MathSciNet  Google Scholar 

  19. Ndiaye, C.B.: Constant \(Q\)-curvature metrics in arbitrary dimension. J. Funct. Anal. 251(1), 1–58 (2007)

    Article  MathSciNet  Google Scholar 

  20. Ndiaye, C.B.: Conformal metrics with constant \(Q\)-curvature for manifolds with boundary. Commun. Anal. Geom. 16(5), 1049–1124 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ndiaye, C.B.: Constant \(T\)-curvature conformal metric on 4-manifolds with boundary. Pac. J. Math. 240(1), 151–184 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ndiaye, C.B.: \(Q\)-curvature flow on manifolds with boundary. Math. Z. 269, 83–114 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ndiaye, C.B.: Algebraic topological methods for the supercritical Q-curvature problem. Adv. Math. 277(277), 56–99 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ndiaye, C.B.: Topological methods for the resonant Q-curvature problem in arbitrary even dimension. J. Geom. Phys. 140, 178–213 (2019)

    Article  MathSciNet  Google Scholar 

  25. Ndiaye, C.B., Xiao, J.: An upper bound of the total \(Q\)-curvature and its isoperimetric deficit for higher-dimensional conformal Euclidean metrics. Calc. Var. Part. Differ. Equ. 38(1–2), 1–27 (2010)

    Article  MathSciNet  Google Scholar 

  26. Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Preprint (1983)

  27. Weinstein, G., Zhang, L.: The profile of bubbling solutions of a class of fourth order geometric equations on 4-manifolds. J. Funct. Anal. 257(12), 3895–3929 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheikh Birahim Ndiaye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by NSF Grant DMS—2000164.

Appendix

Appendix

Lemma 5.1

Assuming that  \(\epsilon \)  is positive and small,  \(a\in \partial M\)  and  \(\lambda \ge \frac{1}{\epsilon }\), then

  1. (1)
    $$\begin{aligned} \varphi _{a, \lambda }(\cdot )={\hat{\delta }}_{a, \lambda }(\cdot )+\log \frac{\lambda }{2}+H(a, \cdot )+\frac{1}{2\lambda ^2}\Delta _{{\hat{g}}_{a}}H(a, \cdot )+O\left( \frac{1}{\lambda ^3}\right) \,\,\,\textrm{on}\,\,\,\partial M \end{aligned}$$
  2. (2)
    $$\begin{aligned} \lambda \frac{\partial \varphi _{a, \lambda }(\cdot )}{\partial \lambda }=\frac{2}{1+\lambda ^2\chi _{\varrho }^2(d_{{\hat{g}}_{a}}(a, \cdot ))}-\frac{1}{\lambda ^2}\Delta _{{\hat{g}}_{a}}H(a, \cdot )+O\left( \frac{1}{\lambda ^3}\right) \,\,\,\textrm{on}\,\,\,\partial M, \end{aligned}$$
  3. (3)
    $$\begin{aligned} \frac{1}{\lambda }\frac{\partial \varphi _{a, \lambda }(\cdot )}{\partial a}= & {} \frac{\chi _{\varrho }(d_{{\hat{g}}_{a}}(a, \cdot ))\chi _{\varrho }^{'}((d_{{\hat{g}}_{a}}(a, \cdot ))}{d_{{\hat{g}}_{a}}(a, \cdot )}\frac{2\lambda exp_a^{-1}(\cdot )}{1+\lambda ^2\chi _{\varrho }^2(d_{{\hat{g}}_a}(a, \cdot ))}+\frac{1}{\lambda }\frac{\partial H(a, \cdot )}{\partial a}\\{} & {} +O\left( \frac{1}{\lambda ^3}\right) ; \textrm{on}\,\,\,\partial M, \end{aligned}$$

    where  O(1) means \(O_{a, \lambda , \epsilon }(1)\) and for it meaning see Sect. 2.

Lemma 5.2

Assuming that  \(\epsilon \)  is small and d positive,  \(a\in M\), \(\lambda \ge \frac{1}{\epsilon }\), and  \(0<2\eta <\varrho \)  with  \(\varrho \)  as in (43), then there holds

$$\begin{aligned}{} & {} \varphi _{a, \lambda }(\cdot )=G(a, \cdot )+\frac{1}{2\lambda ^2}\Delta _{{\hat{g}}_{a}}G(a, \cdot )+O\left( \frac{1}{\lambda ^3}\right) \,\,\textrm{on} \,\,\,\partial M\setminus B^{a}_{a}(\eta ), \\{} & {} \lambda \frac{\partial \varphi _{a, \lambda }(\cdot )}{\partial \lambda }=-\frac{1}{\lambda ^2}\Delta _{{\hat{g}}_{a}}G(a, \cdot )+O\left( \frac{1}{\lambda ^3}\right) \,\,\textrm{on} \,\,\,\partial M\setminus B^{a}_{a}(\eta ), \end{aligned}$$

and

$$\begin{aligned} \frac{1}{\lambda }\frac{\partial \varphi _{a, \lambda }(\cdot )}{\partial a}=\frac{1}{\lambda }\frac{\partial G(a, \cdot )}{\partial a}+O\left( \frac{1}{\lambda ^3}\right) \,\,\textrm{on} \,\,\,\partial M\setminus B^{a}_{a}(\eta ), \end{aligned}$$

where  O(1)  means  \(O_{a, \lambda , \epsilon }(1)\)  and for it meaning see Sect. 2.

Lemma 5.3

Assuming that  \(\epsilon \)  is small and positive, \(a\in \partial M\) and \(\lambda \ge \frac{1}{\epsilon }\), then there holds

$$\begin{aligned}{} & {} \mathbb {P}_g^{4, 3}\left( \varphi _{a, \lambda }, \,\varphi _{a, \lambda }\right) =16\pi ^2\log \lambda -8\pi ^2C_0+8\pi ^2 H(a, a)+\frac{8\pi ^2}{\lambda ^2}\Delta _{{\hat{g}}_a} H(a, a)\\{} & {} \quad +O\left( \frac{1}{\lambda ^3}\right) , \\{} & {} \mathbb {P}_g^{4, 3}\left( \varphi _{a, \lambda },\, \lambda \frac{\varphi _{a, \lambda }}{\partial \lambda } \right) =8\pi ^2-\frac{8\pi ^2}{\lambda ^2}\Delta _{{\hat{g}}_a}H(a, a)+O\left( \frac{1}{\lambda ^3}\right) , \\{} & {} \mathbb {P}_g^{4, 3}\left( \varphi _{a, \lambda }, \,\frac{1}{\lambda }\frac{\varphi _{a, \lambda }}{\partial a}\right) =\frac{8\pi ^2}{\lambda }\frac{\partial H(a, a)}{\partial a}+O\left( \frac{1}{\lambda ^3}\right) , \end{aligned}$$

where  \(C_0\)  is a positive constant, O(1)  means  \(O_{a, \lambda , \epsilon }(1)\)  and for its meaning see Sect. 2.

Lemma 5.4

Assuming that \(\epsilon \) is small and positive \(a_i, a_j\in \partial M\),  \(d_{{\hat{g}}}(a_i, a_j)\ge 4\overline{C}\eta \), \(0<2\eta <\varrho \), \(\frac{1}{\Lambda }\le \frac{\lambda _i}{\lambda _j}\le \Lambda \), and \(\lambda _i, \lambda _j\ge \frac{1}{\epsilon }\), \(\overline{C}\) as in (41), and \(\varrho \) as in (43), then there hold

$$\begin{aligned}{} & {} \begin{aligned} \mathbb {P}_g^{4, 3}\left( \varphi _{a_i, \lambda _i}, \,\varphi _{a_j, \lambda _j}\right) =&8\pi ^2 G (a_j, a_i)+\frac{4\pi ^2}{\lambda _i^2}\Delta _{{\hat{g}}_{a_i}} G(a_i, a_j)+\frac{4\pi ^2}{\lambda _j^2}\Delta _{{\hat{g}}_{a_j}} G(a_j, a_i)\\&+O\left( \frac{1}{\lambda ^3_i}+\frac{1}{\lambda _j^3}\right) , \end{aligned} \\{} & {} \mathbb {P}_g^{4, 3}\left( \varphi _{a_i, \lambda _i}, \,\lambda _j\frac{\partial \varphi _{a_j, \lambda _j}}{\partial \lambda _j}\right) =-\frac{8\pi ^2}{\lambda _j^2}\Delta _{{\hat{g}}_{a_j}}G(a_j, a_i)+O\left( \frac{1}{\lambda ^3_j}\right) , \end{aligned}$$

and

$$\begin{aligned} \mathbb {P}_g^{4, 3}\left( \varphi _{a_i, \lambda _i}, \,\frac{1}{\lambda _j}\frac{\partial \varphi _{a_j, \lambda _j}}{\partial a_j}\right) = \frac{8\pi ^2}{\lambda _j}\frac{\partial G(a_j, a_i)}{\partial a_j}+O\left( \frac{1}{\lambda ^3_j}\right) , \end{aligned}$$

where  O(1)  means here  \(O_{A, {\bar{\lambda }}, \epsilon }(1)\)  with  \(A=(a_i, a_j)\)  and  \({\bar{\lambda }}=(\lambda _i, \lambda _j)\)  and for the meaning of \(O_{A, {\bar{\lambda }}, \epsilon }(1)\), see Sect. 2.

Lemma 5.5

Assuming that \(\epsilon >0\) is very small, we have that for \(a\in \partial M\), \(\lambda \ge \frac{1}{\epsilon }\), there holds

$$\begin{aligned}{} & {} \left\| \lambda \frac{\partial \varphi _{a, \lambda }}{\partial \lambda }\right\| _{\mathbb {P}^{4, 3}}={\tilde{O}}(1), \end{aligned}$$
(119)
$$\begin{aligned}{} & {} \left\| \frac{1}{\lambda }\frac{\partial \varphi _{a, \lambda }}{\partial a}\right\| _{\mathbb {P}^{4, 3}}={\tilde{O}}(1), \end{aligned}$$
(120)

and

$$\begin{aligned} \left\| \frac{1}{\sqrt{\log \lambda }}\varphi _{a, \lambda }\right\| _{\mathbb {P}^{4, 3}}={\tilde{O}}(1), \end{aligned}$$
(121)

where here \({\tilde{O}}(1)\) means bounded by positive constants form below and above independent of \(\epsilon \), a, and \(\lambda \).

Lemma 5.6

  1. (1)

    If \(\epsilon \) is small and positive, \(a \in \partial M\), \(p\in \mathbb {N}^*\), and \(\lambda \ge \frac{1}{\epsilon }\), then there holds

    $$\begin{aligned} C^{-1}\lambda ^{6p-3}\le \oint _{\partial M}e^{3p\varphi _{a, \lambda }}dS_g\le C\lambda ^{6p-3}, \end{aligned}$$
    (122)

    where C is independent of a, \(\lambda \), and \(\epsilon \).

  2. (2)

    If \(\epsilon \) is positive and small, \(a_i, a_j \in \partial M\), \(\lambda \ge \frac{1}{\epsilon }\) and \(\lambda d_{{\hat{g}}}(a_i,a_j) \ge 4\overline{C} R\), then we have

    $$\begin{aligned} \mathbb {P}_g^{4, 3} (\varphi _{a_i,\lambda }, \,\varphi _{a_j,\lambda })\, \le \,8\pi ^2 G(a_i,a_j) \, + \, O(1), \end{aligned}$$
    (123)

    where  O(1)  means here  \(O_{A, \lambda , \epsilon }(1)\)  with  \(A=(a_i, a_j)\), and for the meaning of \(O_{A, \lambda , \epsilon }(1)\), see Sect. 2.

  3. (3)

    If \(\epsilon \) is positive and small, \(a_i, a_j \in \partial M\), \(\lambda _i, \lambda _j\ge \frac{1}{\epsilon }\), \(\frac{1}{\Lambda }\le \frac{\Lambda _i}{\lambda _j}\le \Lambda \) and \(\lambda _id_{{\hat{g}}}(a_i,a_j) \ge 4\overline{C} R\), then we have

    $$\begin{aligned} \mathbb {P}_g^{4, 3} (\varphi _{a_i,\lambda }, \,\varphi _{a_j,\lambda }) \, \le \, 8\pi ^2 G(a_i,a_j) \, + \, O(1), \end{aligned}$$
    (124)

    where  O(1)  means here  \(O_{A, {\bar{\lambda }}, \epsilon }(1)\)  with  \(A=(a_i, a_j)\)  and  \({\bar{\lambda }}=(\lambda _i, \lambda _j)\)  and for the meaning of \(O_{A, {\bar{\lambda }}, \epsilon }(1)\), see Sect. 2.

Lemma 5.7

Let \(p\in \mathbb {N}^*\), \({\hat{R}}\) be a large positive constant, \(\epsilon \) be a small positive number, \(\alpha _i\ge 0\), \(i=1, \ldots , p\), \(\sum _{i=1}^p\alpha _i=k\), \(\lambda \ge \frac{1}{\epsilon }\) and \( u = \sum _{i=1}^p \alpha _i \varphi _{a_i,\lambda }\). Assuming that there exist two positive integer \(i, j\in \{1, \ldots , p\}\) with \(i\ne j\) such that \(\lambda d_{{\hat{g}}}(a_i,a_j) \le \frac{{\hat{R}}}{4\overline{C}}\), where \(\overline{C}\) is as in (41), then we have

$$\begin{aligned} \mathcal {E}_g(u) \, \le \mathcal {E}_g(v) \, + \, O(\log {\hat{R}}), \end{aligned}$$
(125)

with

$$\begin{aligned} v:= \sum _{k \le p, k \ne i,j} \alpha _k \varphi _{a_k,\lambda } \, + (\alpha _i + \alpha _j) \varphi _{a_i,\lambda }. \end{aligned}$$

where here  O(1) stand for  \(O_{{{\bar{\alpha }}}, A, \lambda , \epsilon }(1)\), with  \({{\bar{\alpha }}}=(\alpha _1, \ldots , \alpha _p)\)  and \(A=(a_1, \ldots , a_p)\), and for the meaning of  \(O_{{{\bar{\alpha }}}, A, \lambda , \epsilon }(1)\), we refer the reader to Sect. 2.

Lemma 5.8

  1. (1)

    If \(\epsilon \) is positive and small, \(a_i, a_j\in \partial M\), \(\lambda \ge \frac{1}{\epsilon }\) and \(\lambda d_{{\hat{g}}}(a_i, a_j)\ge 4\overline{C} R\), then

    $$\begin{aligned} \varphi _{a_j, \lambda }(\cdot )=G(a_j,\cdot )+O(1)\,\,\,\text {in}\,\,B^{a_i}_{a_i}\left( \frac{R}{\lambda }\right) , \end{aligned}$$

    where here  O(1) means here  \(O_{ A, \lambda , \epsilon }(1)\), with  \(A=(a_i, a_j)\), and for the meaning of  \(O_{ A, \lambda , \epsilon }(1)\), see Sect. 2.

  2. (2)

    If \(\epsilon \) is positive and small, \(a_i, a_j\in \partial M\), \(\lambda _i, \lambda _j\ge \frac{1}{\epsilon }\), \(\frac{1}{\Lambda }\le \frac{\Lambda _i}{\lambda _j}\le \Lambda \), and \(\lambda _i d_{{\hat{g}}}(a_i, a_j)\ge 4\overline{C}R\), then

    $$\begin{aligned} \varphi _{a_j, \lambda _j}(\cdot )=G(a_j,\cdot )+O(1)\,\,\,\text {in}\,\,B^{a_i}_{a_i}\left( \frac{R}{\lambda _i}\right) , \end{aligned}$$

    where here  O(1) means here  \(O_{ A, {\bar{\lambda }}, \epsilon }(1)\), with  \(A=(a_i, a_j)\), \({\bar{\lambda }}=(\lambda _i, \lambda _j)\) and for the meaning of  \(O_{ A, \lambda , \epsilon }(1)\), see Sect. 2.

Lemma 5.9

There exists  \(\Gamma _0\)  and  \({\tilde{\Lambda }}_0\) two large positive constant such that for every \(a\in \partial M\), \(\lambda \ge {\tilde{\Lambda }}_0\), and  \(w\in F_{a, \lambda }:=\{w\in \mathcal {H}_{\frac{\partial }{\partial n}}, \overline{w}_{(Q, T)}=\left\langle \varphi _{a, \lambda }, w\right\rangle _{\mathbb {P}^{4, 3}}=\left\langle v_r, w\right\rangle _{\mathbb {P}^{4, 3}}=0,\,r=1,\ldots ,{\bar{k}}\}\), we have

$$\begin{aligned} \oint _{\partial M}e^{3{\hat{\delta }}_{a,\lambda }}w^2dV_{g_{a}}\le \Gamma _0\Vert w\Vert ^2_{\mathbb {P}^{4, 3}}. \end{aligned}$$
(126)

Lemma 5.10

Assuming that \(\eta \)  is a small positive real number with \(0<2\eta <\varrho \) where \(\varrho \) is as in (43), then there exists a small positive constant \(c_0:=c_0(\eta )\) and \(\Lambda _0:=\Lambda _0(\eta )\) such that for every \(a_i\in \partial M\) concentrations points with \(d_{{\hat{g}}}(a_i, a_j)\ge 4\overline{C}\eta \) where \({\bar{C}}\) is as in (41), for every  \(\lambda _i>0\)  concentrations parameters satisfying \(\lambda _i\ge \Lambda _0\), with \(i=1, \ldots , k\), and for every  \(w\in E_{A, {\bar{\lambda }}}^*=\cap _{i=1}^k E^*_{a_i, \lambda _i}\) with \(A:=(a_1, \ldots , a_k\)), \({\bar{\lambda }}:= (\lambda _1, \ldots , \lambda _k)\) and \(E^*_{a_i, \lambda _i}=\{w\in \mathcal {H}_{\frac{\partial }{\partial n}}: \,\,\left\langle \varphi _{a_i, \lambda _i}, w\right\rangle _{\mathbb {P}^{4, 3}}=\left\langle \frac{\partial \varphi _{a_i, \lambda _i}}{\partial \lambda _i}, w\right\rangle _{\mathbb {P}^{4, 3}}=\left\langle \frac{\partial \varphi _{a_i, \lambda _i}}{\partial a_i}, w\right\rangle _{\mathbb {P}^{4, 3}}=\overline{w}_{(Q, T)}=\left\langle v_r, w\right\rangle _{\mathbb {P}^{4, 3}}=0,\,r=1,\ldots ,{\bar{k}}\}\), there holds

$$\begin{aligned} \Vert w\Vert ^2_{\mathbb {P}^{4, 3}}- 6\sum _{i=1}^k\oint _{\partial M}e^{3{\hat{\delta }}_{a_i,\lambda _i}}w^2dS_{g_{a_i}}\ge c_0\Vert w\Vert ^2_{\mathbb {P}^{4, 3}}. \end{aligned}$$
(127)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndiaye, C.B. Variational theory for the resonant T-curvature equation. Nonlinear Differ. Equ. Appl. 31, 63 (2024). https://doi.org/10.1007/s00030-024-00953-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-024-00953-4

Keywords

Mathematics Subject Classification

Navigation