Skip to main content
Log in

The Brezis–Nirenberg problem for systems involving divergence-form operators

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We study a system of nonlinear elliptic partial differential equations involving divergence-form operators. The problem under consideration is a natural generalization of the classical Brezis–Nirenberg problem. We find conditions on the domain, the coupling coefficients and the coefficients of the differential operator under which positive solutions are guaranteed to exist and conditions on these objects under which no positive solution exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal. Theory Methods Appl. 42(5), 771–787 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, T.: Problemes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    Article  MATH  Google Scholar 

  3. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbosa, E.R., Montenegro, M.: Extremal maps in best constants vector theory. Part I: duality and compactness. J. Funct. Anal. 262(1), 331–399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. SMR 398, 2 (1983)

    MATH  Google Scholar 

  6. Capozzi, A., Fortunato, D., Palmieri, G.: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. l’Inst. Henri Poincaré C, Anal. non linéaire 2(6), 463–470 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  8. De Lis, J.C.S.: Hopf maximum principle revisited. Electron. J. Differ. Equ. 115(9), 1–9 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Degiovanni, M., Musesti, A., Squassina, M.: On the regularity of solutions in the Pucci–Serrin identity. Calc. Var. Partial Differ. Equ. 18(3), 317–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Egnell, H.: Semilinear elliptic equations involving critical Sobolev exponents. Arch. Ration. Mech. Anal. 104, 27–56 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferrero, A., Gazzola, F.: Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 177(2), 494–522 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faria, L.F.O., Miyagaki, O.H., Pereira, F.R., Squassina, M., Zhang, C.: The Brezis–Nirenberg problem for nonlocal systems. Adv. Nonlinear Anal. 5(1), 85–103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. García Azorero, J.P., Peral Alonso, I.: Existence and nonuniqueness for the \(p\)-Laplacian. Commun. Partial Differ. Equ. 12(12), 126–202 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gazzola, F., Grunau, H.-C.: Critical dimensions and higher order Sobolev inequalities with remainder terms. Nonlinear Differ. Equ. Appl. 8(1), 35–44 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hadiji, R., Molle, R., Passaseo, D., Yazidi, H.: Localization of solutions for nonlinear elliptic problems with critical growth. C. R. Math. 343(11–12), 725–730 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hadiji, R., Yazidi, H.: Problem with critical Sobolev exponent and with weight. Chin. Ann. Math., Ser. B 28(3), 327–352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jannelli, E.: The role played by space dimension in elliptic critical problems. J. Differ. Equ. 156(2), 407–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Montenegro, M., de Moura, R.J.: On the influence of second order uniformly elliptic operators in nonlinear problems. Math. Nachr. 288(2–3), 281–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35(3), 681–703 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. 110(1), 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by National Science Foundation Grants DMS-2136890 and DMS-2149865.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Mathew Gluck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we record the details of some computations whose inclusion in the main body of the text would have distracted from the story.

Proof of Lemma 4.1

For any \(\xi , \zeta \in {\mathbb {R}}^m\) we have

$$\begin{aligned} H(\xi ) - H(\xi - \zeta ) = \sum _{i = 1}^m (A_i(\xi , \zeta ) + B_i(\xi , \zeta )), \end{aligned}$$
(8.1)

where

$$\begin{aligned} A_i(\xi , \zeta ) = (|\xi _i|^{q_i} - |\xi _i - \zeta _i|^{q_i} - |\zeta _i|^{q_i})P_i(\xi , \zeta ), \qquad B_i(\xi , \zeta ) = |\zeta _i|^{q_i} P_i(\xi , \zeta ), \end{aligned}$$

and

$$\begin{aligned} P_i(\xi , \zeta ) = \prod _{j = 1}^{i - 1}|\xi _j - \zeta _j|^{q_j}\cdot \prod _{\ell = i + 1}^m|\xi _\ell |^{q_\ell }. \end{aligned}$$

In our notation for \(P_i(\xi , \zeta )\) empty products (for example products of the form \(\prod _{j = 1}^0 c_j\) or of the form \(\prod _{j = m + 1}^m c_j\)) are understood to equal 1. For any \(1< r< \infty \) and any \(\epsilon >0\), the inequality

$$\begin{aligned} ||a + b|^r - |a|^r - |b|^r| \le \epsilon |a|^r + C_\epsilon |b|^r \end{aligned}$$

holds for all \(a, b\in {\mathbb {R}}\). For each \(i = 1, \ldots , m\), applying this inequality to to the first factor of \(A_i(\xi , \zeta )\) (with \(a = \xi _i-\zeta _i\), \(b= \zeta _i\) and \(r = q_i\)) gives

$$\begin{aligned} \left| |\xi _i|^{q_i} - |\xi _i - \zeta _i|^{q_i} - |\zeta _i|^{q_i}\right| \le \epsilon |\xi _i - \zeta _i|^{q_i} + C_\epsilon |\zeta _i|^{q_i}. \end{aligned}$$

Therefore, using (8.1) we obtain

$$\begin{aligned} \begin{aligned}&|H(\xi ) - H(\xi - \zeta ) - H(\zeta )|\\&\quad \le \sum _{i = 1}^m\left( \epsilon |\xi _i - \zeta _i|^{q_i} + C_\epsilon |\zeta _i|^{q_i}\right) P_i(\xi , \zeta ) + |\zeta _1|^{q_1}\bigg |P_1(\xi , \zeta )\\ {}&\qquad - \prod _{j = 2}^m|\zeta _j|^{q_j}\bigg | + \sum _{i = 2}^m B_i(\xi , \zeta ) \end{aligned} \end{aligned}$$
(8.2)

for all \(\epsilon >0\) and all \((\xi , \zeta )\in {\mathbb {R}}^m\times \mathbb R^m\). For \(\epsilon >0\), and with \({\varvec{u}}^k\) as in the hypotheses of the lemma, setting

$$\begin{aligned} f^k_\epsilon = \left( \left| H(\varvec{u}^k) - H(\varvec{u}^k- \varvec{u}) - H(\varvec{u})\right| - \epsilon \sum _{i = 1}^m|u^k_i - u_i|^{q_i} P_i(\varvec{u}^k, \varvec{u})\right) ^+ \end{aligned}$$

we have \(f_\epsilon ^k \rightarrow 0\) a.e. in \(\Omega \). Moreover, in view of (8.2) we have \(0\le f_\epsilon ^k \le g_\epsilon ^k\), where

$$\begin{aligned} g_\epsilon ^k = C_\epsilon \sum _{i = 1}^m|u_i|^{q_i}P_i(\varvec{u}^k, \varvec{u}) + |u_1|^{q_1}\bigg |P_1(\varvec{u}^k, \varvec{u}) - \prod _{j = 2}^m|u_j|^{q_j}\bigg | + \sum _{i = 2}^m B_i(\varvec{u}^k, \varvec{u}). \end{aligned}$$

For every \(i = 1, \ldots , m\), \(P_i(\varvec{u}^k, \varvec{u})\) is bounded in \(L^{p/(p-q_i)}(\Omega )\) and

$$\begin{aligned} P_i(\varvec{u}^k,\varvec{u}) \rightarrow {\left\{ \begin{array}{ll} \prod _{\ell = 2}^m|u_\ell |^{q_\ell } &{} \text { if }i = 1\\ 0 &{} \text { if } i\in \{2, \ldots , m\} \end{array}\right. } \qquad \text { a.e. }x\in \Omega . \end{aligned}$$

Therefore, \(P_1(\varvec{u}^k, \varvec{u})\rightharpoonup \prod _{\ell = 2}^m|u_\ell |^{q_\ell }\) weakly in \(L^{p/(p - q_1)}(\Omega )\) and, for \(i \in \{2, \ldots , m\}\), \(P_i(\varvec{u}^k,\varvec{u})\rightharpoonup 0\) weakly in \(L^{p/(p - q_i)}(\Omega )\). Consequently,

$$\begin{aligned} \sum _{i = 1}^m\int _\Omega |u_i|^{q_i}P_i(\varvec{u}^k, \varvec{u})\; \textrm{d}x \rightarrow \int _\Omega H(\varvec{u})\; \textrm{d}x \qquad \text { as }k\rightarrow \infty . \end{aligned}$$

By a similar argument, we find both that \(\big |P_1(\varvec{u}^k, \varvec{u}) - \prod _{j = 2}^m|u_j|^{q_j}\big |\rightharpoonup 0\) weakly in \(L^{p/(p - q_1)}(\Omega )\) and that \(B_i(\varvec{u}^k, \varvec{u})\rightharpoonup 0\) weakly in \(L^{p/(p - q_i)}(\Omega )\) for \(i\in \{2, \ldots , m\}\), so we deduce that \(\int _\Omega g_\epsilon ^k\; \textrm{d}x \rightarrow C_\epsilon \int _\Omega H(\varvec{u})\; \textrm{d}x\) as \(k\rightarrow \infty \). The (generalized) Dominated Convergence Theorem now guarantees that \(\int _\Omega f_\epsilon ^k \; \textrm{d}x\rightarrow 0\). Finally,

$$\begin{aligned} \begin{aligned}&\int _\Omega |H(\varvec{u}^k)- H(\varvec{u}^k - \varvec{u}) - H(\varvec{u})|\; \textrm{d}x\\&\quad \le \int _\Omega f_\epsilon ^k \; \textrm{d}x + \epsilon \sum _{i = 1}^m\int _\Omega |u_i^k - u_i|^{q_i} P_i(\varvec{u}^k,\varvec{u})\; \textrm{d}x \\&\quad \le C\epsilon + \circ (1), \end{aligned} \end{aligned}$$

where \(\circ (1)\rightarrow 0\) as \(k\rightarrow \infty \) and C depends on m, p, \(\Vert \varvec{u}\Vert _{L^p(\Omega ; {\mathbb {R}}^m)}\), and an upper bound for \(\{\Vert \varvec{u}^k\Vert _{L^p(\Omega ; {\mathbb {R}}^m)}\}_{k = 1}^\infty \), but is independent of k. Since \(\epsilon >0\) is arbitrary, the lemma is established.\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, B., Gluck, M., Guingona, V. et al. The Brezis–Nirenberg problem for systems involving divergence-form operators. Nonlinear Differ. Equ. Appl. 30, 75 (2023). https://doi.org/10.1007/s00030-023-00882-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00882-8

Keywords

Mathematics Subject Classification

Navigation