Skip to main content
Log in

Velocity diagram of traveling waves for discrete reaction–diffusion equations

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We consider a discrete version of reaction-diffusion equations. A typical example is the fully overdamped Frenkel–Kontorova model, where the velocity is proportional to the force. We also introduce an additional exterior force denoted by \(\sigma \). For general discrete and fully nonlinear dynamics, we study traveling waves of velocity \(c=c(\sigma )\) depending on the parameter \(\sigma \). Under certain assumptions, we show properties of the velocity diagram \(c(\sigma )\) for \(\sigma \in [\sigma ^-,\sigma ^+]\). We show that the velocity c is nondecreasing in \(\sigma \in (\sigma ^-,\sigma ^+)\) in the bistable regime, with vertical branches \(c\ge c^+\) for \(\sigma =\sigma ^+\) and \(c\le c^-\) for \(\sigma =\sigma ^-\) in the monostable regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al Haj, M., Forcadel, N., Monneau, R.: Existence and uniqueness of traveling waves for fully overdamped Frenkel–Kontorova models. Arch. Ration. Mech. Anal. 210(1), 45–99 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al Haj, M., Monneau, R.: Existence of traveling waves for Lipschitz discrete dynamics. Monostable case as a limit of bistable cases, original preprint (2014)

  3. Al Haj, M., Monneau, R.: Traveling waves for discrete reaction–diffusion equations in the general monostable case. new preprint (2022)

  4. Al Haj, M., Monneau, R.: The velocity diagram for traveling waves. Comptes Rendus. Mathématique, Tome 361 (2023), 777–782.

  5. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model, Concepts, Methods and Applications. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  6. Carpio, A., Chapman, S., Hastings, S., Mcleod, J.B.: Wave solutions for a discrete reaction–diffusion equation. Eur. J. Appl. Math. 11(4), 399–412 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Fu, S.-C., Guo, J.S.: Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal. 38(1), 233–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Guo, J.S.: Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J. Differ. Equ. 184(2), 549–569 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Guo, J.S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326(1), 123–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Guo, J.S., Wu, C.-C.: Traveling waves in discrete periodic media for bistable dynamics. Arch. Ration. Mech. Anal. 189(2), 189–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coville, J., Dávile, J., Mart\(\acute{\text{i}}\)nez, S.: Non-local anisotropic dispersal with monostable nonlinearty. J. Differ. Equ. 244(12), 3080–3118 (2008)

  12. Forcadel, N., Imbert, C., Monneau, R.: Homogenization of fully overdamped Frenkel–Kontorova models. J. Differ. Equ. 246(3), 1057–1097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forcadel, N., Imbert, C., Monneau, R.: Homogenization of accelerated Frenkel–Kontorova models with \(n\) types particles. Trans. Am. Math. Soc. 364(12), 6187–6227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, S.-C., Guo, J.-S., Shieh, S.-Y.: Traveling wave solutions for some discrete quasilinear parabolic equations. Nonlinear Anal. 48(8), 1137–1149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, J.-S., Hamel, F.: Front propagation for discrete periodic monostable equations. Math. Ann. 335(3), 489–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, J.-S., Wu, C.-H.: Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system. Osaka J. Math. 45(2), 327–346 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Guo, J.-S., Wu, C.-H.: Front propagation for a two dimensional periodic monostable lattice dynamical system. Discrete Contin. Dyn. Syst. 26(1), 197–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamel, F., Nadirashvili, N.: Travelling fronts and entire solutions of the Fisher-KPP equation in \(\mathbb{R}^{N}\). Arch. Ration. Mech. Anal. 157(2), 91–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hou, X., Li, Y., Meyer, K.R.: Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete Contin. Dyn. Syst. 26(1), 265–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hudson, W., Zinner, B.: Existence of traveling waves for a generalized discrete Fisher’s equation. Commun Appl. Nonlinear Anal. 1(3), 23–46 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Hupkes, H.J., Morelli, L., Schouten, W.M., van Vleck, E.S.: Difference Equations and Discrete Dynamical Systems with Applications. In: Bohner, M., Siegmund, S., Šimon Hilscher, R., Stehlik, P. (eds.) Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations. Springer Proceedings in Mathematics & Statistics, vol. 312, pp. 112–55. Springer, Cham (2020)

    MATH  Google Scholar 

  22. Li, B., Weinberger, H.F., Lewis, M.A.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196(1), 82–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13(3), 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yagisita, H.: Existence and Nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 45(4), 925–953 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zinner, B., Harris, G., Hudson, W.: Traveling wavefronts for the discrete Fisher’s equation. J. Differ. Equ. 105(1), 46–62 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Lebanese National Council for Scientific Research (CNRS-L) and the Campus France (EGIDE earlier) for supporting him. He also want to thank professor R. Talhouk and the Lebanese university. The last author was also partially supported by the contract ERC ReaDi 321186. Finally, this work was partially supported by ANR HJNet (ANR-12-BS01-0008-01) and by ANR-12-BLAN-WKBHJ: Weak KAM beyond Hamilton-Jacobi. There are no other funding. This work has been done in collaboration. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Example of discontinuous viscosity solutions

Appendix: Example of discontinuous viscosity solutions

We give in this section an example of a discontinuous viscosity solution.

Proposition 6.1

(Discontinuous viscosity solution for the classical Frenkel–Kontorova model) Consider \(\beta >0,\) \(\sigma \in {\mathbb R}\) and let \((c,\phi )\) be a solution of

$$\begin{aligned} \left\{ \begin{aligned}&c\phi '(z)=\phi (z+1)-2\phi (z)+\phi (z-1)+f(\phi (z))+\sigma \quad \text{ on } \ {\mathbb R},\quad f(x):=-\beta \cos (2\pi x) \\&\phi \ \text{ is } \text{ non-decreasing }\\&\phi (+\infty )-\phi (-\infty )=1. \end{aligned} \right. \end{aligned}$$
(6.1)

(i) (Sign of the critical velocities)

Then \(\sigma ^{\pm }=\pm \beta \) and \(c_-<0<c_+\).

(ii) (Discontinuous solution for large \(\beta \))

Moreover, if \(\beta >1\) and \(|\sigma |<\beta -1,\) then \(\phi \notin C^{0}\) and \(c=0.\)

Proof of Proposition 6.1

Step 1: proof of i)

Clearly, we have \(\sigma ^{\pm }=\pm \beta \). Let \(\sigma =\sigma ^{+}\) and let us show that \(c^{+}>0.\) In this case, we can moreover assume that a solution \(\phi \) of (6.1) satisfies

$$\begin{aligned} \phi (-\infty )=0,\quad \phi (+\infty )=1 \end{aligned}$$

Integrating over the real line the equation

$$\begin{aligned} c^{+}\phi '(z)=\phi (z+1)+\phi (z-1)-2\phi (z)+g(\phi (z)),\quad g:= f+ \sigma ^+\ge 0 \end{aligned}$$

we get that

$$\begin{aligned} c^{+}=\int _{{\mathbb R}}g(\phi (z))dz\ge 0. \end{aligned}$$

Since \(g>0\) on (0, 1),  if \(c^{+}=0,\) then

$$\begin{aligned} \phi (z)=0 \text{ or } 1\ \text{ almost } \text{ everywhere }. \end{aligned}$$

Then the equation itself implies that (because \(g(\phi )=0\) a.e.)

$$\begin{aligned} \Delta _{1}\phi (z):=\phi (z+1)+\phi (z-1)-2\phi (z)=0\ \text{ almost } \text{ everywhere. } \end{aligned}$$
(6.2)

Because \(\phi \) is monotone non-decreasing, up to translation, we have

$$\begin{aligned} \phi (z)=\left\{ \begin{array}{ll} 0&{}\quad \quad \text{ if }\quad z<0\\ 1&{}\quad \quad \text{ if }\quad z>0\\ \end{array}\right. \end{aligned}$$

This leads to a contradiction with (6.2), and shows that \(c_+>0\). Similarly, we get \(c_-<0\).

Step 2: proof of ii)

Let \(|\sigma |<\beta -1\) and let us show that \(\phi \notin C^{0}({\mathbb R}).\) For the convenience of the reader we give the proof of this result (which is basically contained in Theorem 1.2 in Carpio et al. [6]).

Assume to the contrary that \(\phi \in C^{0}({\mathbb R})\). Notice that because \(\phi \) is non-decreasing and \(\phi (+\infty )-\phi (-\infty )=1,\) we deduce that

$$\begin{aligned} \phi (z+1)-2\phi (z)+\phi (z-1)\in [-1,1]. \end{aligned}$$

Define now

$$\begin{aligned} \psi (z)=\phi (z+1)-2\phi (z)+\phi (z-1)+f(\phi (z))+\sigma \quad \text{ with }\quad f(\phi ):=-\beta \cos (2\pi \phi ) \end{aligned}$$

Assume by contradiction that \(\phi \in C^{0}\). Then we deduce that

$$\begin{aligned} \left\{ \begin{aligned}&\sup _{{\mathbb R}}\psi \ge \beta +\sigma -1>0\\&\inf _{{\mathbb R}}\psi \le -\beta +\sigma +1<0, \end{aligned} \right. \end{aligned}$$

where the strict inequalities follow from \(|\sigma |<\beta -1.\) But \(c\phi '=\psi \) which implies that \(c\phi '\) changes sign. Contradiction. Therefore \(\phi \notin C^{0}({\mathbb R})\), which also implies that \(c=0.\)

This ends the proof of the proposition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Haj, M., Monneau, R. Velocity diagram of traveling waves for discrete reaction–diffusion equations. Nonlinear Differ. Equ. Appl. 30, 73 (2023). https://doi.org/10.1007/s00030-023-00871-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00871-x

Keywords

Mathematics Subject Classification

Navigation