1 Introduction

Given the N-th sphere \(({{\mathbb {S}}}^N, g) \) equipped with the standard metric g and a fixed smooth function \({\tilde{K}} \), the prescribed scalar curvature problem on \({{\mathbb {S}}}^N\) consists in understanding whether it is possible to find another metric \( {\tilde{g}} \) in the conformal class of g, such that the scalar curvature of \( {\tilde{g}} \) is \({\tilde{K}} \). For some positive function \(v: {{\mathbb {S}}}^N \rightarrow {\mathbb {R}}\), and a related conformal change of the metric

$$\begin{aligned} {\tilde{g}} = v^{4 \over N-2} \, g, \end{aligned}$$

the scalar curvature with respect to \({\tilde{g}}\) is given by

$$\begin{aligned} v^{-{N+2 \over N-2} } \, \left( \Delta _{{{\mathbb {S}}}^N} v-\frac{N(N-2)}{2} v \right) , \end{aligned}$$

where \(\Delta _{{{\mathbb {S}}}^N}\) is the Laplace–Beltrami operator on \({{\mathbb {S}}}^N\). Thus the prescribed scalar curvature problem on \({{\mathbb {S}}}^N\) can be addressed by studying the solvability of the problem

$$\begin{aligned} \Delta _{{{\mathbb {S}}}^N} v-\frac{N(N-2)}{2} v+{\tilde{K}}(y) v^{\frac{N+2}{N-2}}=0 \quad \text{ on } \ {{\mathbb {S}}}^N, \qquad v >0 \quad {\quad \hbox {in } }{{\mathbb {S}}}^N. \end{aligned}$$
(1.1)

Testing the Eq. (1.1) against v and integrating on \({{\mathbb {S}}}^N\), we get that a necessary condition for the solvability of this problem is that \({\tilde{K}}(y) \) must be positive somewhere. There are other obstructions for the existence of solutions, which are said to be of topological type. For instance, a solution v must satisfy the following Kazdan-Warner type condition (see [15]):

$$\begin{aligned} \int _{{{\mathbb {S}}}^N} \nabla {\tilde{K}}(y) \cdot \nabla y \, v^{\frac{2N}{N-2}} \, d\sigma =0. \end{aligned}$$
(1.2)

This condition is a direct consequence of Theorem 5.17 in [16], where Kazdan and Warner proved that given a positive solution v to

$$\begin{aligned} \Delta _{{{\mathbb {S}}}^N} v-\frac{N(N-2)}{2} v+H(y) v^{a}=0 \end{aligned}$$

on the standard sphere \({{\mathbb {S}}}^N\), \(N\ge 3\), then

$$\begin{aligned} \int _{{{\mathbb {S}}}^N} v^{a+1} \nabla H \cdot \nabla F = {1\over 2} (N-2) \left( {N+2 \over N-2}- a \right) \int _{{{\mathbb {S}}}^N} v^{a+1} H \, F, \end{aligned}$$
(1.3)

for any spherical harmonics F of degree 1. Taking \(a={N+2 \over N-2}\), \(H= {\tilde{K}}\) and \(F=y\) in (1.3), we can obtain condition (1.2). The problem of determining which \({\tilde{K}}(y) \) admits a solution has been the object of several studies in the past years. We refer the readers to [2,3,4, 6,7,8, 10, 14, 15, 19, 30], and the references therein.

By using the stereo-graphic projection \(\pi _N: {\mathbb {R}}^N \rightarrow {\mathbb {S}}^N{\setminus } \{(0,0,\ldots , 1)\}\), the prescribed scalar curvature problem on \({{\mathbb {S}}}^N\), i.e. (1.1), can be transformed into the following semi-linear elliptic equation

$$\begin{aligned} \Delta v+ K(y) v^{2^*-1} =0, \quad v >0, \quad \text {in}~ {\mathbb {R}}^N,\, v\in D^{1,2}({\mathbb {R}}^N). \end{aligned}$$
(1.4)

Here \(2^*= {2N \over N-2}\), \(K(y)= {\tilde{K}} (\pi _N y)\), and \(D^{1,2}({\mathbb {R}}^N) \) denote the completion of \(C_c^\infty ({\mathbb {R}}^N) \) with respect to the norm \(\int _{{\mathbb {R}}^N}|\nabla v|^2 \). It is of interest to establish under what kind of assumptions on K problem (1.4) admits one or multiple solutions.

For \(N=3 \), Li [17] showed problem (1.4) has infinitely many solutions provided that K(y) is bounded below, and periodic in one of its variables, and the set \(\{x\, | \, K(x)=\max _{y\in {\mathbb {R}}^3}K(y)\} \) is not empty and contains at least one bounded connected component.

If K has the form \(K(y)=1+\epsilon h(y) \), namely it is a perturbation of the constant 1, Cao et al. [5] proved the existence of multiple solutions.

If K(y) has a sequence of strictly local maximum points moving to infinity, Yan [32] constructed infinitely many solutions.

Wei and Yan [31] showed that problem (1.4) has infinitely many solutions provided K is radially symmetric \(K(y) = K(r)\), \(r= |y|\), and has a local maximum around a given \(r_0 >0\). More precisely, they ask that there are \( r_0 \), \(c_0> 0 \) and \( m \in [2, N-2) \) such that

$$\begin{aligned} K(s)= K(r_0)-c_0|s-r_0|^m+O\big ({|s-r_0|^{m+\sigma }}\big ), \quad s\in (r_0-\delta , r_0+\delta ), \end{aligned}$$

where \(\sigma , \delta \) are small positive constants. In order to briefly discuss the main results in [31], we will recall the expression of Aubin-Talenti bubbles. It is well known (see [29]) that all solutions to the following problem

$$\begin{aligned} \Delta u+ u^{2^*-1}=0, \quad u>0~ \text {in}~ {\mathbb {R}}^N, \end{aligned}$$
(1.5)

are given by

$$\begin{aligned} U_{x, \Lambda }(y)= c_N \Big (\frac{\Lambda }{1+\Lambda ^2|y-x|^2}\Big )^{\frac{N-2}{2}}, \, x \in {\mathbb {R}}^N, \, \Lambda >0, \end{aligned}$$

and \(c_N= [N(N-2)]^{\frac{N-2}{4}}\). The solutions in [31] are obtained by gluing together a large number of Aubin-Talenti bubbles, which looks like

$$\begin{aligned} {\tilde{u}}_k \sim \sum _{j=1}^k U_{x_j, {\bar{\Lambda }}}, \end{aligned}$$

where \( {\bar{\Lambda }} \) is a positive constant and the points \(x_j\) are distributed along the vertices of a regular polygon of k edges in the \((y_1,y_2)\)-plane, with \(|x_j| \rightarrow r_0\) as \(k \rightarrow \infty \):

$$\begin{aligned} x_j=\left( {\tilde{r}} \cos \frac{2(j-1)\pi }{k}, {\tilde{r}}\sin \frac{2(j-1)\pi }{k}, 0,\ldots ,0\right) ,\quad j=1,\ldots ,k, \end{aligned}$$

with \( {\tilde{r}} \rightarrow r_0 \) as \( k \rightarrow \infty \).

Under a weaker symmetry condition for \(K(y)=K(|y'|,y'') \) with \(y=(|y'|,y'')\in {\mathbb {R}}^2\times {\mathbb {R}}^{N-2} \), Peng et al. [27] constructed infinitely many bubbling solutions, which concentrate at the saddle points of the potential K(y) . Guo and Li [11] admitted infinitely many solutions for problems (1.4) with polyharmonic operators. For fractional case, we refer to [13, 23].

The study of other aspects of problem (1.4), such as radial symmetry of their solutions, uniqueness of solutions, Liouville type theorem, a priori estimates, and bubbling analysis, have been the object of investigation of several researchers. We refer the readers to the papers [1, 9, 18, 20,21,22, 25, 26, 32] and the references therein.

Recently, Guo et al. [12] investigated the spectral property of the linearized problem associated to (1.4) around the solution \( {\tilde{u}}_k \) found in [31]. They proved a non-degeneracy result for such operator by using a refined version of local Pohozaev identities. As an application of this non-degeneracy result, they built new type of solutions by gluing another large number of bubbles, whose centers lie near the circle \(|y|= r_0 \) in the \((y_3,y_4) \)-plane.

All these results concern solutions made by gluing together Aubin-Talenti bubbles with centres distributed along the vertices of one or more planar polygons, thus of two-dimensional nature. The purpose of this paper is to present a different type of solution to (1.4) with a more complex concentration structure, which cannot be reduced to a two-dimensional one.

To present our result, we assume that K is radially symmetric and satisfies the following condition \(({{\textbf{H}}})\): There are \( r_0 \) and \(c_0> 0 \) such that

$$\begin{aligned} K(s)= K(r_0)-c_0|s-r_0|^m+O\big ({|s-r_0|^{m+\sigma }}\big ), \quad s\in (r_0-\delta , r_0+\delta ), \end{aligned}$$

where \(\sigma , \delta >0 \) are small constants, and

$$\begin{aligned} m \in {\left\{ \begin{array}{ll} [ 2, N-2) \quad &{}\text {if} \quad N=5 ~\text {or} ~6,\\ \big (\frac{(N-2)^2}{2N-3}, N-2\big ) \quad &{}\text {if} \quad N \ge 7. \end{array}\right. } \end{aligned}$$
(1.6)

There is a slight difference between our assumptions on K(s) and the ones in [31]. We will comment on this issue later.

Without loss of generality, we assume \( r_0= 1, \, K(1) =1\). For any integer k, we denote

$$\begin{aligned} {\textbf{r}}=k^{\frac{N-2}{N-2-m}}, \end{aligned}$$
(1.7)

and set \( u(y)={\textbf{r}}^{-\frac{N-2}{2}}v \big (\frac{|y|}{{\textbf{r}}}\big ) \). Then the problem (1.4) can be rewritten, in terms of u, as

$$\begin{aligned} -\Delta u= K\Big (\frac{|y|}{{\textbf{r}}}\Big ) u^{2^*-1}, \quad u >0, \quad \text {in}~ {\mathbb {R}}^N, \quad u \in D^{1,2}({\mathbb {R}}^N). \end{aligned}$$
(1.8)

We define

$$\begin{aligned} W_{r,h,\Lambda } (y)&= \sum _{j=1}^kU_{{\overline{x}}_j, \Lambda } (y) +\sum _{j=1}^k U_{{\underline{x}}_j, \Lambda } (y), \quad y \in {\mathbb {R}}^N, \end{aligned}$$
(1.9)

for k integer large, where

$$\begin{aligned} {\left\{ \begin{array}{ll} {\overline{x}}_j= r \Big (\sqrt{1-h^2} \cos {\frac{2(j-1) \pi }{k}}, \sqrt{1-h^2} \sin {\frac{2(j-1) \pi }{k}}, h,{{\textbf{0}}}\Big ), \quad j= 1, \ldots , k,\\ {\underline{x}}_j= r \Big (\sqrt{1-h^2} \cos {\frac{2(j-1) \pi }{k}}, \sqrt{1-h^2} \sin {\frac{2(j-1) \pi }{k}},-h, {{\textbf{0}}}\Big ), \quad j= 1, \ldots , k. \end{array}\right. } \end{aligned}$$

Here \( {{\textbf{0}}} \) is the zero vector in \({\mathbb {R}}^{N-3} \) and hr are positive parameters.

We shall construct a family of solutions to problem (1.8) which are small perturbations of \(W_{r,h,\Lambda }\). More precisely, the Aubin-Talenti bubbles are now centred at points lying on the top and the bottom circles of a cylinder and this configuration is now invariant under a non-trivial sub-group of O(3) rather than O(2).

Throughout of the present paper, we assume \(N\ge 5\) and \((r,h, \Lambda ) \in {{{\mathscr {S}}}_k} \), where

$$\begin{aligned} {{{\mathscr {S}}}_k} = \Bigg \{&(r,h,\Lambda ) \big |\, r\in \Big [k^{\frac{N-2}{N-2-m}}-{\hat{\sigma }}, k^{\frac{N-2}{N-2-m}}+\hat{\sigma }\Big ], \quad \Lambda \in \Big [\Lambda _0-{\hat{\sigma }}, \Lambda _0+{\hat{\sigma }}\Big ], \nonumber \\&\qquad \qquad h \in \Big [\frac{B'}{k^{\frac{N-3}{N-1}}} \Big (1-{\hat{\sigma }}\Big ), \frac{B'}{k^{\frac{N-3}{N-1}}} \Big (1+{\hat{\sigma }}\Big )\Big ] \Bigg \}, \end{aligned}$$
(1.10)

with \( \Lambda _0, B' \) being the constants in (3.7), (3.10) and \( {\hat{\sigma }}\) a fixed small number, independent of k.

Since \(h \rightarrow 0\) as \(k \rightarrow \infty \), then the two circles where the points \({{\overline{x}}}_j\) and \({\underline{x}}_j\) are distributed become closer to each other as k increases.

In this paper, we shall prove that for any k large enough, problem (1.8) admits a family of solutions \(u_k\) with the approximate form

$$\begin{aligned} u_k(y) \sim W_{r,h,\Lambda }. \end{aligned}$$
(1.11)

Moreover, these solutions are polygonal symmetry in the \((y_1,y_2) \)-plane, even in the \(y_3 \) direction and radially symmetric in the variables \(y_4,\ldots ,y_N \). Our solutions are thus different from the ones obtained in [31] and have strong analogies with the doubling construction of the entire finite energy sign-changing solutions for the Yamabe equation in [24].

Define the symmetric Sobolev space:

$$\begin{aligned} H_s= \Bigg \{&u : u \in H^1({\mathbb {R}}^N), u \text {is even in} y_\ell , \, \ell = 2, 3, 4, \ldots , N, \quad \\&\qquad u \left( \sqrt{y_1^2+y_2^2} \cos \theta , \sqrt{y_1^2+y_2^2} \sin \theta , y_3, y''\right) \\&\qquad = u \left( \sqrt{y_1^2+y_2^2} \cos {\left( \theta +\frac{2j\pi }{k}\right) }, \sqrt{y_1^2+y_2^2} \sin {\left( \theta +\frac{2j\pi }{k}\right) }, y_3, y''\right) \Bigg \}, \end{aligned}$$

where \( \theta = \arctan {\frac{y_2}{y_1}} \).

Let us define the following norms which capture the decay property of functions

$$\begin{aligned} \Vert u\Vert _{*}= \sup _{y \in {\mathbb {R}}^N}\Bigl ( \sum _{j=1}^k \Big [\frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}\Big ] \Bigr )^{-1}|u(y)|,\nonumber \\ \end{aligned}$$
(1.12)

and

$$\begin{aligned} \Vert f\Vert _{**}= \sup _{y \in {\mathbb {R}}^N}\Bigl (\sum _{j=1}^k \Big [\frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N+2}{2}+\tau }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N+2}{2}+\tau }}\Big ]\Bigr )^{-1}|f(y)|,\nonumber \\ \end{aligned}$$
(1.13)

where

$$\begin{aligned} \tau = \left( \frac{N-2-m}{N-2}, \frac{N-2-m}{N-2}+ \epsilon _1\right) , \end{aligned}$$
(1.14)

for some \(\epsilon _1\) small. The main results of this paper are the following:

Theorem 1.1

Let \(N\ge 5\) and suppose that K(|y|) satisfies \(({{\textbf{H}}})\). Then there exists a large integer \(k_0\), such that for each integer \(k\ge k_0\), problem (1.8) has a solution \(u_k\) of the form

$$\begin{aligned} u_k(y)= W_{r_k, h_k,\Lambda _k}(y)+\phi _k(y), \end{aligned}$$
(1.15)

where \( \phi _k \in H_s, \, (r_k,h_k, \Lambda _k) \in {{\mathscr {S}}_k}\), and \( \phi _k \) satisfies

$$\begin{aligned} \Vert \phi _k\Vert _{*} = o_k(1), \quad {\text{ as }} \quad k \rightarrow \infty . \end{aligned}$$

Equivalently, problem (1.4) has solution \(v_k(y) \) of the form

$$\begin{aligned} v_k(y)={\textbf{r}}^{\frac{2-N}{2}} \Big [W_{r_k, h_k,\Lambda _k}({\textbf{r}} y)+\phi _k({\textbf{r}} y)\Big ], \end{aligned}$$

with \(\textbf{r}\) as in (1.7).

Let us sketch the proof of Theorem 1.1. The first step in our argument is to find \(\phi \) so that \(u=W_{r,h,\Lambda }+\phi \) solves the auxiliary problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta \bigl ( W_{r,h,\Lambda }+\phi \bigr ) =K\bigl (\frac{|y|}{{\textbf{r}}}\bigr )\bigl (W_{r,h,\Lambda }+\phi \bigr )^{2^*-1} \\ \qquad \qquad \qquad \qquad +\sum \limits _{\ell =1}^3 \sum \limits _{j=1}^k {c_\ell } \Big (\, U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}+U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,\Big )\, \; \text {in}\; {\mathbb {R}}^N,\\ \phi \in {\mathbb {E}}, \end{array}\right. } \end{aligned}$$
(1.16)

for some constants \( c_\ell \) for \( \ell = 1,2,3 \). In (1.16), the functions \(\overline{{\mathbb {Z}}}_{\ell j}\) and \(\underline{{\mathbb {Z}}}_{\ell j}\) are given by

$$\begin{aligned}&\overline{{\mathbb {Z}}}_{1j}=\frac{\partial U_{{\overline{x}}_j, \Lambda }}{\partial r}, \qquad \qquad \overline{{\mathbb {Z}}}_{2j}=\frac{\partial U_{{\overline{x}}_j, \Lambda }}{\partial h}, \qquad \qquad \overline{{\mathbb {Z}}}_{3j}=\frac{\partial U_{{\overline{x}}_j, \Lambda }}{\partial \Lambda }, \\&\underline{{\mathbb {Z}}}_{1j}=\frac{\partial U_{{\underline{x}}_j, \Lambda }}{\partial r}, \qquad \qquad \underline{{\mathbb {Z}}}_{2j}=\frac{\partial U_{{\underline{x}}_j, \Lambda }}{\partial h}, \qquad \qquad \underline{{\mathbb {Z}}}_{3j}=\frac{\partial U_{{\underline{x}}_j, \Lambda }}{\partial \Lambda }, \end{aligned}$$

for \( j= 1, \ldots , k \). Moreover, the function \(\phi \) belongs to the set \({\mathbb {E}}\) given by

$$\begin{aligned} {\mathbb {E}}= \Big \{v: v\in H_s, \quad&\int _{{{\mathbb {R}}}^N} U_{{\overline{x}}_j, \Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{\ell j} v= 0 \quad \text {and} \nonumber \\ \quad&\int _{{{\mathbb {R}}}^N} U_{{\underline{x}}_j, \Lambda }^{2^*-2} \underline{{\mathbb {Z}}}_{\ell j} v= 0, \quad j= 1, \ldots , k, \quad \ell = 1,2, 3 \Big \}. \end{aligned}$$
(1.17)

From the linear theory developed in Sect. 2, problem (1.16) can be solved by means of the contraction mapping theorem. More precisely, we prove that, for any \((r,h,\Lambda ) \in {{{\mathscr {S}}}_k}\) there exist \(\phi = \phi _{r,h,\Lambda } \in {\mathbb {E}} \) and constants \(c_\ell \), \(\ell =1,2,3\) which solve the auxiliary problem (1.16).

After the correction \(\phi \) has been found, we shall choose \((r,h,\Lambda ) \in {{{\mathscr {S}}}_k} \) so that the multipliers \(c_\ell =0\,(\ell = 1,2,3) \) in (1.16). As a consequence, we can derive the results as in Theorem 1.1.

Equation (1.8) is the Euler–Lagrange equation associated to the energy functional

$$\begin{aligned} I(u)=\frac{1}{2}\int _{{{\mathbb {R}}}^N}|\nabla u|^2 dy-\frac{1}{2^{*}}\int _{{\mathbb {R}}^N}K\Big (\frac{|y|}{{\textbf{r}}}\Big )|u|^{2^*} dy. \end{aligned}$$
(1.18)

Thus, roughly speaking, if \((r,h,\Lambda )\) is a critical point of function

$$\begin{aligned} F(r,h,\Lambda ):= I(W_{r, h, \Lambda }+\phi _{r, h, \Lambda }) \quad \text {for} ~ \phi _{r, h, \Lambda } \in {{\mathbb {E}}}, \end{aligned}$$

then the constants \( c_ \ell ,\,\ell =1,2,3 \) would be zero. Thus finding solutions of problem (1.8) would be reduced to find a critical point of \( F(r,h,\Lambda ) \). This is the result in Proposition 3.1.

An important work of this paper is to give an accurate expression of \( F(r,h,\Lambda ) \) (see Proposition 3.2). Under the assumptions \( r \sim k^{\frac{N-2}{N-2-m}}, h \rightarrow 0, \frac{1}{hk} \rightarrow 0 \) as \(k \rightarrow \infty \), we first get the expansion of the energy functional \( I(W_{r,h,\Lambda } )\)

$$\begin{aligned}&F_1 (r,h,\Lambda ) : = I(W_{r,h,\Lambda } ) \\ {}&\,=\, k A_1 -\frac{k}{\Lambda ^{N-2}} \Big [\frac{B_4 k^{N-2}}{(r \sqrt{1-h^2})^{N-2}}\,+\, \frac{B_5 k}{r^{N-2} h^{N-3} \sqrt{1-h^2}}\Big ]\\&\quad +k \Big [\frac{A_2}{\Lambda ^{m} k^{\frac{(N-2)m}{N-2-m}}} +\frac{A_3}{\Lambda ^{m-2} k^{\frac{(N-2)m}{N-2-m}}} ({\textbf{r}}-r)^2\Big ] +k O \Big (\frac{1}{k^{\frac{(N-2)m}{N-2-m}+\sigma }}\Big ), \end{aligned}$$

where \( A_i\) for \(i=1,2,3\) and \( B_j\) for \( j=4,5 \) are constants. We denote

$$\begin{aligned} {\mathcal {G}}(h)&:= \frac{B_4 k^{N-2}}{(\sqrt{1-h^2})^{N-2}}\,+\, \frac{B_5 k}{h^{N-3} \sqrt{1-h^2}}, \end{aligned}$$

and let h be the solution of \( \partial _h {\mathcal {G}}(h)= 0\), then

$$\begin{aligned} h= \frac{B'}{k^{\frac{N-3}{N-1}}} \big (1+o(1)\big ), \quad {\text{ as }} \quad k \rightarrow \infty , \end{aligned}$$

for some \(B' >0 \). If \( r \sim k^{\frac{N-2}{N-2-m}}, h \sim \frac{B'}{k^{\frac{N-3}{N-1}}} \), then

$$\begin{aligned} \frac{B_5 k}{r^{N-2} h^{N-3} \sqrt{1-h^2}} = \frac{\tilde{B}}{k^{\frac{(N-2)m}{N-2-m}+\frac{2(N-3)}{N-1}}}(1+o(1)), \quad {\text{ as }} \quad k \rightarrow \infty \end{aligned}$$

for some constant \({\tilde{B}}\).

However, we now find that the term \(O \Big (\frac{1}{k^{\frac{(N-2)m}{N-2-m}+\sigma }}\Big ) \) in the expansion of \(F_1 (r,h, \Lambda )\) competes with the term \(\frac{B_5 k}{r^{N-2} h^{N-3} \sqrt{1-h^2}}\). This makes it impossible to identify a critical point for \( F_1 (r,h,\Lambda )\). In reality, though the remainder \(O \Big (\frac{1}{k^{\frac{(N-2)m}{N-2-m}+\sigma }}\Big ) \) can be estimated in a more accurate way (see Proposition A.4) under our assumption \(({\textbf{H}}) \).

We need to expand the full energy \( F(r,h,\Lambda ) = I(W_{r, h, \Lambda }+\phi _{r, h, \Lambda })\). We need a strong control on the size of \(\phi _{r, h, \Lambda }\) in order not to destroy the critical point structure of \(F_1 (r,h, \Lambda )\) and to ensure the qualitative properties of the solutions as stated in Theorem 1.1. This is another delicate step of our construction, where we make full use of the assumption \(({\textbf{H}})\) on K.

Structure of the paper. The remaining part of this paper is devoted to the proof of Theorem 1.1, which will be organized as follows:

  1. 1.

    In Sect. 2, we will establish the linearized theory for the linearized projected problem. We will give estimates for the error terms in this Section.

  2. 2.

    In Sect. 3, we shall prove Theorem 1.1 by showing there exists a critical point of reduction function \( F(r,h,\Lambda ) \).

  3. 3.

    Some tedious computations and some useful Lemmas will be given in Appendices 34.

Notation and preliminary results. For the readers’ convenience, we will provide a collection of notation. Throughout this paper, we employ \(C, C_j \) to denote certain constants and \( \sigma , \tau , \sigma _j \) to denote some small constants or functions. We also note that \( \delta _{ij} \) is Kronecker delta function:

$$\begin{aligned} \delta _{ij}= {\left\{ \begin{array}{ll} 1, \quad \text {if} ~ i= j, \\ 0, \quad \text {if} ~ i \ne j. \end{array}\right. } \end{aligned}$$

Furthermore, we also employ the common notation by writing \(O(f(r,h)), o(f(r,h)) \) for the functions which satisfy

$$\begin{aligned} \text {if} \quad g(r,h) \in O(f(r,h)) \quad \text {then}\quad {\lim _{k \rightarrow +\infty }} \Big |\, \frac{g(r,h)}{f(r,h)} \, \Big |\le C<+\infty , \end{aligned}$$

and

$$\begin{aligned} \text {if} \quad g(r,h) \in o(f(r,h)) \quad \text {then}\quad {\lim _{k \rightarrow +\infty }} \frac{g(r,h)}{f(r,h)}=0. \end{aligned}$$

2 Finite dimensional reduction

For \(j= 1,\ldots , k \), we divide \({\mathbb {R}}^N\) into k parts:

$$\begin{aligned} \Omega _j :=&\Big \{y=(y_1, y_2, y_3, y'') \in {\mathbb {R}}^3 \times {\mathbb {R}}^{N-3}:\\&\qquad \Big \langle \frac{(y_1, y_2)}{|(y_1, y_2)|}, \Big (\cos {\frac{2(j-1) \pi }{k}}, \sin {\frac{2(j-1) \pi }{k}}\Big ) \Big \rangle _{{\mathbb {R}}^2}\ge \cos {\frac{\pi }{k}}\Big \}. \end{aligned}$$

where \( \langle , \rangle _{{\mathbb {R}}^2}\) denote the dot product in \({\mathbb {R}}^2\). For \(\Omega _j\), we further divide it into two parts:

$$\begin{aligned} \Omega _j^+=&\Big \{y: y=(y_1, y_2, y_3, y'') \in \Omega _j, y_3\ge 0 \Big \},\\ \Omega _j^-=&\Big \{y: y=(y_1, y_2, y_3, y'') \in \Omega _j, y_3<0 \Big \}. \end{aligned}$$

We can know that

$$\begin{aligned} {\mathbb {R}}^N= \cup _{j=1}^k \Omega _j, \quad \Omega _j= \Omega _j^+\cup \Omega _j^- \end{aligned}$$

and

$$\begin{aligned} \Omega _j \cap \Omega _i=\emptyset , \quad \Omega _j^+\cap \Omega _j^-=\emptyset , \qquad \text {if}\quad i\ne j. \end{aligned}$$

We consider the following linearized problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta {\phi }-(2^*-1)K\big (\frac{|y|}{{\textbf{r}}}\big ) W_{r,h,\Lambda }^{2^*-2}\phi =f\\ \quad +\sum \limits _{i=1}^k\sum \limits _{\ell =1}^3 \Big ({c}_\ell U_{{\overline{x}}_i,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell i}+{c}_\ell U_{{\underline{x}}_i,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell i}\Big ) \;\; \text {in}\; {\mathbb {R}}^N,\\ \phi \in {\mathbb {E}}, \end{array}\right. } \end{aligned}$$
(2.1)

for some constants \(c_{\ell } \).

Coming back to Eq. (1.5), we recall that the functions

$$\begin{aligned} Z_i(y):={\partial U \over \partial y_i}(y), \quad i=1, \ldots , N, \quad Z_{N+1}(y):={N-2 \over 2} U(y)+y\cdot \nabla U(y).\nonumber \\ \end{aligned}$$
(2.2)

belong to the null space of the linearized problem associated to (1.5) around an Aubin-Talenti bubble, namely they solve

$$\begin{aligned} \Delta \phi +(2^*-1) U^{2^*-2} \phi =0,~ \text {in}~ {\mathbb {R}}^N, \quad \phi \in D^{1,2}({\mathbb {R}}^N). \end{aligned}$$
(2.3)

It is known [28] that these functions span the set of the solutions to (2.3). This fact will be used in the following crucial lemma which concerns the linearized problem (2.1).

Lemma 2.1

Suppose that \(\phi _{k}\) solves (2.1) for \(f=f_{k}\). If \(\Vert f_{k}\Vert _{**}\) tends to zero as k tends to infinity, so does \(\Vert \phi _{k}\Vert _{*}\).

The norms \(\Vert \cdot \Vert _*\) and \(\Vert \cdot \Vert _{**}\) are defined respectively in (1.12) and (1.13).

Proof

We prove the Lemma by contradiction. Suppose that there exists a sequence of \((r_k, h_k, \Lambda _k)\in {{{\mathscr {S}}}_k}\), and for \(\phi _k\) satisfies (2.1) with \(f=f_k, r= r_k, h= h_k, \Lambda = \Lambda _k\), with \(\Vert f _{k}\Vert _{**}\rightarrow 0 \), and \(\Vert \phi _k\Vert _*\ge c'>0\). Without loss of generality, we can assume that \(\Vert \phi _k\Vert _*=1 \). For convenience, we drop the subscript k.

From (2.1), we know that

$$\begin{aligned}\begin{aligned} \phi (y) \,=\,&(2^*-1)\int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}K\Big (\frac{|z|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2}\phi (z)\,{\mathrm d}z +\int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}\, f(z) {\mathrm d}z \\&+\int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}\, \sum _{j=1}^k\sum _{\ell =1}^3 \Big (\, {c_\ell }U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}+{c_\ell }U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,\Big ) {\mathrm d}z \\:=\,&M_1\,+\,M_2\,+\,M_3. \end{aligned} \end{aligned}$$

For the first term \(M_1 \), we make use of Lemma B.5, so that

$$\begin{aligned} M_1&\le C\Vert {\phi }\Vert _* \, \int _{{\mathbb {R}}^N}\frac{K\left( \frac{|z|}{{\textbf{r}}}\right) }{|z-y|^{N-2}} W_{r,h,\Lambda }^{2^*-2} \\ {}&\quad \times \left( \sum _{j=1}^k \left[ \frac{1}{(1+|z-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|z-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}\right] \right) \, {\mathrm d}z\\&\le C\Vert {\phi }\Vert _* \, \sum _{j=1}^k \Big [\frac{1}{(1+|z-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau +\sigma }} +\frac{1}{(1+|z-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau +\sigma }}\Big ]. \end{aligned}$$

For the second term \(M_2 \), we make use of Lemma B.4, so that

$$\begin{aligned}&M_2 \le C\Vert f\Vert _{**}\int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}\sum _{j=1}^k \Big [\frac{1}{(1+|z-{\overline{x}}_j|)^{\frac{N+2}{2}+\tau }}+\frac{1}{(1+|z-{\underline{x}}_j|)^{\frac{N+2}{2}+\tau }}\Big ]\,{\mathrm d}z\\&\quad \le C\Vert f\Vert _{**} \sum _{j=1}^k \Big [\frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}\Big ]. \end{aligned}$$

In order to estimate the term \(M_3 \), we will first give the estimates of \( \overline{{\mathbb {Z}}}_{1j} \) and \( \underline{{\mathbb {Z}}}_{1j} \)

$$\begin{aligned} \begin{aligned} |\overline{{\mathbb {Z}}}_{1j}|\le \frac{C}{(1+|y-{\overline{x}}_j|)^{N-2}}, \quad |\overline{{\mathbb {Z}}}_{2j}|\le \frac{C r}{(1+|y-{\overline{x}}_j|)^{N-2}}, \quad |\overline{{\mathbb {Z}}}_{3j}|\le \frac{C}{(1+|y-{\overline{x}}_j|)^{N-2}},\\ |\underline{{\mathbb {Z}}}_{1j}|\le \frac{C}{(1+|y-{\underline{x}}_j|)^{N-2}}, \quad |\underline{{\mathbb {Z}}}_{2j}|\le \frac{C r}{(1+|y-{\underline{x}}_j|)^{N-2}}, \quad |\underline{{\mathbb {Z}}}_{3j}|\le \frac{C}{(1+|y-{\underline{x}}_j|)^{N-2}}. \end{aligned}\nonumber \\ \end{aligned}$$
(2.4)

Combining estimates (2.4) and Lemma B.4, we have

$$\begin{aligned} \sum _{j=1}^k\, \int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}\, U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j} \, {\mathrm d}z&\le C \sum _{j=1}^k\, \int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}\, \frac{(1+r \delta _{\ell 2})}{(1+|z-{\overline{x}}_j|)^{N+2}} \, {\mathrm d}z\\&\le C\sum _{j=1}^k\, \frac{(1+r\delta _{\ell 2})}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}, \quad \text {for} ~\ell = 1, 2, 3, \end{aligned}$$

where \(\delta _{\ell 2} =0\) if \(\ell \not = 2\), \(\delta _{\ell 2}=1\) if \(\ell =2\). Similarly, we have

$$\begin{aligned} \sum _{j=1}^k\, \int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}\, U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,{\mathrm d}z \le C \sum _{j=1}^k\, \frac{(1+r \, \delta _{\ell 2})}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}, \quad \text {for} ~\ell = 1, 2, 3. \end{aligned}$$

Next, we will give the estimates of \({c_\ell }, \ell = 1,2,3 \). Multiply both sides of (2.1) by \(\overline{{\mathbb {Z}}}_{q 1}, q=1,2,3 \), then we obtain that

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^N} \Big [-\Delta {\phi }-(2^*-1)K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2}{\phi }\Big ] \overline{{\mathbb {Z}}}_{q 1}\\&\quad = \int _{{\mathbb {R}}^N} f \,\overline{{\mathbb {Z}}}_{q 1}+\sum _{j=1}^k\sum _{\ell =1}^3 \int _{{\mathbb {R}}^N} \Big (\, {c_\ell }U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}+{c_\ell }U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,\Big )\,\overline{{\mathbb {Z}}}_{q 1}. \end{aligned} \end{aligned}$$
(2.5)

Using Lemma B.3, we can get

$$\begin{aligned}&\int _{{\mathbb {R}}^N} f \, \overline{{\mathbb {Z}}}_{q 1} \le C\Vert f\Vert _{**}\,\sum _{j=1}^k \int _{{\mathbb {R}}^N} \frac{1+r \, \delta _{\ell 2}}{(1+|y-{\overline{x}}_1|)^{N-2}} \\ {}&\qquad \left[ \frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N+2}{2}+\tau }} +\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N+2}{2}+\tau }}\right] \, \\&\quad \le C(1+r \, \delta _{\ell 2}) \Vert f_k\Vert _{**}. \end{aligned}$$

The discussion on the left side of (2.5) may be more tricky, in fact, we have

$$\begin{aligned}&\int _{{\mathbb {R}}^N} \Big [-\Delta {\phi }-(2^*-1)K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2}{\phi }\Big ] \overline{{\mathbb {Z}}}_{q 1}\\&\quad = \int _{{\mathbb {R}}^N} \Big [-\Delta \overline{{\mathbb {Z}}}_{q 1} -(2^*-1)K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{q 1}\Big ] {\phi }\\&\quad =(2^*-1) \int _{{\mathbb {R}}^N} \Big [1-K\Big (\frac{|y|}{{\textbf{r}}}\Big )\Big ] W_{r,h,\Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{q 1}{\phi }+\Big (U_{{\overline{x}}_1,\Lambda }^{2^*-2}-W_{r,h,\Lambda }^{2^*-2}\Big ) \overline{{\mathbb {Z}}}_{q 1}{\phi }\\&\quad :=J_1+J_2 . \end{aligned}$$

Using the property of K(s) , similar to the proof of Lemma B.5, we can get

$$\begin{aligned} J_{1}&\le C\Vert {\phi }\Vert _{*} \int _{{{\mathbb {R}}}^N}\Big |1-K\Big (\frac{|y|}{{\textbf{r}}}\Big ) \Big | \, W_{r,h,\Lambda }^{2^*-2} \overline{{{\mathbb {Z}}}}_{q 1} \sum _{j=1}^k\\ {}&\quad \left[ \frac{1}{(1+|y-{{\overline{x}}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{{\underline{x}}}_j|)^{\frac{N-2}{2}+\tau }}\right] \\&= C\Vert {\phi }\Vert _{*} \int \limits _{||y|-{\textbf{r}}|\le \sqrt{{\textbf{r}}}}\Big |1-K\left( \frac{|y|}{{\textbf{r}}}\right) \Big | \, W_{r,h,\Lambda }^{2^*-2} \overline{{{\mathbb {Z}}}}_{q 1} \\&\quad \sum _{j=1}^k \left[ \frac{1}{(1+|y-{{\overline{x}}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{{\underline{x}}}_j|)^{\frac{N-2}{2}+\tau }}\right] \\&\quad +\,C\Vert {\phi }\Vert _{*} \int \limits _{||y|-{\textbf{r}}|\ge \sqrt{{\textbf{r}}}}\Big |1-K\left( \frac{|y|}{{\textbf{r}}}\right) \Big | \, W_{r,h,\Lambda }^{2^*-2} \overline{{{\mathbb {Z}}}}_{q 1} \\&\quad \sum _{j=1}^k \left[ \frac{1}{(1+|y-{{\overline{x}}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{{\underline{x}}}_j|)^{\frac{N-2}{2}+\tau }}\right] \\&\le \frac{C}{\sqrt{{\textbf{r}}}}\int _{{{\mathbb {R}}}^N} W_{r, h, \Lambda }^{2^*-2}(y) \frac{1+r\, \delta _{\ell 2}}{(1+|y-{{\overline{x}}}_1|)^{N-2}}\sum _{j=1}^k \frac{1}{(1+|y-{{\underline{x}}}_j|)^{\frac{N-2}{2}+\tau }}\, \\&\quad +\frac{C}{{\textbf{r}}}^{\sigma }\int _{{{\mathbb {R}}}^N} W_{r,h,\Lambda }^{2^*-2}(y) \frac{1+r\, \delta _{\ell 2}}{(1+|y-{{\overline{x}}}_1|)^{N-2}}\sum _{j=1}^k \frac{1}{(1+|y-{{\overline{x}}}_j|)^{\frac{N-2}{2}+\tau -2\sigma }}\, \\ {}&\le \frac{C}{{\textbf{r}}}^{\sigma }(1+r\, \delta _{\ell 2}). \end{aligned}$$

For \(J_2\), it is easy to derive that

$$\begin{aligned} J_2&\le \int _{{\mathbb {R}}^N} \Big |U_{{\overline{x}}_1,\Lambda }^{2^*-2}-W_{r,h,\Lambda }^{2^*-2} \Big |\frac{1+r \, \delta _{\ell 2}}{(1+|y-{\overline{x}}_1|)^{N-2}} \\&\quad \times \sum _{j=1}^k \left[ \frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}\right] \\&\le \frac{C}{{\textbf{r}}}^{\sigma }(1+r\, \delta _{\ell 2}). \end{aligned}$$

Then, we get

$$\begin{aligned} \int _{{\mathbb {R}}^N} \Big [-\Delta {\phi }-(2^*-1)K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2}\,{\phi }\Big ] \overline{{\mathbb {Z}}}_{q 1} \le \frac{C}{{\textbf{r}}}^{\sigma }(1+r \, \delta _{\ell 2}) \, \Vert {\phi }\Vert _{*}. \end{aligned}$$

On the other hand, there holds

$$\begin{aligned} \sum _{j=1}^k \int _{{\mathbb {R}}^N} \big (\, U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}+U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,\Big )\,\overline{{\mathbb {Z}}}_{q 1} = {\bar{c}}_{\ell }\delta _{\ell q} (1+\delta _{q2} r^2)+o(1), \quad {\text{ as }} \quad k \rightarrow \infty . \end{aligned}$$

Note that

$$\begin{aligned} \int _{{\mathbb {R}}^N}\,U_{{\overline{x}}_1,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell 1} \overline{{\mathbb {Z}}}_{q 1}=\left\{ \begin{array}{lll} 0,\qquad \text {if}\quad \ell \ne q, &{}&{}\\ {\bar{c}}_q (1+\delta _{q2} r^2),\qquad \text {if} \quad \ell =q, \end{array}\right. \end{aligned}$$

for some constant \({\bar{c}}_q >0 \). Then we can get

$$\begin{aligned} c_{\ell }= \frac{1+r\delta _{\ell 2}}{1+\delta _{\ell 2} r^2} O\Bigl (\frac{1}{{\textbf{r}}}^{\sigma }\Vert {\phi }\Vert _{*}+\Vert f\Vert _{**} \Bigr )= o(1), \quad {\text{ as }} \quad k \rightarrow \infty . \end{aligned}$$
(2.6)

Then we have

$$\begin{aligned} \begin{aligned} |{\phi }|&\le \left( \Vert f\Vert _{**} \sum _{j=1}^k \Big [\frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}\Big ]\right. \\&\quad \left. +{\sum _{j=1}^k \left[ \frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau +\sigma }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau +\sigma }}\right] }\, \right) . \end{aligned} \end{aligned}$$
(2.7)

Combining this fact and \(\Vert {\phi }\Vert _{*}= 1 \), we have the following claim:

Claim 1: There exist some positive constants \( {\bar{R}}, \delta _1 \) such that

$$\begin{aligned} \Vert \phi \Vert _{L^\infty (B_{{\bar{R}}}({\overline{x}}_l))} \ge \delta _1> 0, \end{aligned}$$
(2.8)

for some \( l\in \{1,2, \ldots , k\} \).

Since \( \phi \in H_s \), we assume that \(l=1 \). By using local elliptic estimates and (2.7), we can get, up to subsequence, \({{\tilde{\phi }}}(y) = \phi (y-{\overline{x}}_1) \) converge uniformly in any compact set to a solution

$$\begin{aligned} -\Delta u-(2^*-1) U_{0,\Lambda }^{2^*-2} u=0,\quad \text {in}\;{\mathbb {R}}^N, \end{aligned}$$

for some \(\Lambda \in [L_1,L_2] \). Since \( \phi \) is even in \(y_d, d= 2, 4, \ldots ,N \), we know that u is also even in \(y_d, d= 2, 4, \ldots ,N \). Then we know that u must be a linear combination of the functions

$$\begin{aligned} \frac{\partial U_{0,\Lambda }}{\partial y_1}, \qquad \frac{\partial U_{0,\Lambda }}{\partial y_3}, \qquad y \cdot {\nabla U_{0,\Lambda }}+(N-2) U_{0,\Lambda }. \end{aligned}$$

From the assumptions

$$\begin{aligned} \int _{{{\mathbb {R}}}^N} U_{{\overline{x}}_1, \Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{\ell 1}\, {{\tilde{\phi }}} = 0 \quad \text {for} ~ \ell = 1,2,3, \end{aligned}$$

we can get

$$\begin{aligned} \sqrt{1-h^2} \, \int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\frac{\partial U_{0,\Lambda }}{\partial y_1}\,{{\tilde{\phi }}}+h \, \int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\frac{\partial U_{0,\Lambda }}{\partial y_3}\,{{\tilde{\phi }}}= 0, \\ \sqrt{1-h^2} \, \int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\frac{\partial U_{0,\Lambda }}{\partial y_1}\,{{\tilde{\phi }}}-h \, \int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\frac{\partial U_{0,\Lambda }}{\partial y_3}\,{{\tilde{\phi }}}= 0, \end{aligned}$$

and

$$\begin{aligned} \int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\Big [y \cdot {\nabla U_{0,\Lambda }}+(N-2) U_{0,\Lambda } \Big ] {{\tilde{\phi }}} =0. \end{aligned}$$

By taking limit, we have

$$\begin{aligned}&\int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\frac{\partial U_{0,\Lambda }}{\partial y_1}\,u\\ {}&\quad = \int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\frac{\partial U_{0,\Lambda }}{\partial y_3}\,u= \int _{{{\mathbb {R}}}^N} U_{0, \Lambda }^{2^*-2}\,\Big [y \cdot {\nabla U_{0,\Lambda }}+(N-2) U_{0,\Lambda } \Big ] u =0. \end{aligned}$$

So we have \(u=0 \). This is a contradiction to (2.8). \(\square \)

For the linearized problem (2.1), we have the following existence, uniqueness results. Furthermore, we can give the estimates of \( \phi \) and \(c_\ell , \ell =1,2,3 \).

Proposition 2.2

There exist \(k_0>0 \) and a constant \(C>0 \) such that for all \(k\ge k_0 \) and all \(f\in L^{\infty }({\mathbb {R}}^N) \), problem (2.1) has a unique solution \(\phi \equiv {\textbf{L}}_k(f) \). Besides,

$$\begin{aligned} \Vert \phi \Vert _*\le C\Vert f\Vert _{**},\qquad |c_{\ell }|\le \frac{C}{1+\delta _{\ell 2} r}\Vert f\Vert _{**}, \quad \ell =1,2,3. \end{aligned}$$
(2.9)

Proof

Recall the definition of \({\mathbb {E}}\) as in (1.17), we can rewrite problem (2.1) in the form

$$\begin{aligned} -\Delta {\phi }=f+(2^*-1)K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2} \phi \quad \text {for all} ~ \phi \in {\mathbb {E}}, \end{aligned}$$
(2.10)

in the sense of distribution. Furthermore, by using Riesz’s representation theorem, Eq. (2.10) can be rewritten in the operational form

$$\begin{aligned} ({\mathbb {I}}- {\mathbb {T}}_k) \phi = {\tilde{f}}, \quad \text {in} ~ {\mathbb {E}}, \end{aligned}$$
(2.11)

where \({\mathbb {I}}\) is identity operator and \({\mathbb {T}}_k\) is a compact operator. Fredholm’s alternative yields that problem (2.11) is uniquely solvable for any \( {\tilde{f}} \) when the homogeneous equation

$$\begin{aligned} ({\mathbb {I}}-{\mathbb {T}}_k) \phi = 0, \quad \text {in} ~ {\mathbb {E}}, \end{aligned}$$
(2.12)

has only the trivial solution. Moreover, problem (2.12) can be rewritten as following

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta {\phi }-(2^*-1)K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2}\phi \\ \quad = \sum \limits _{i=1}^k\sum \limits _{\ell =1}^3 \Big ({c}_\ell U_{{\overline{x}}_i,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell i}+{c}_\ell U_{{\underline{x}}_i,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell i}\Big )\;\;\text {in}\;{\mathbb {R}}^N, \\ \phi \in {\mathbb {E}}. \end{array}\right. } \end{aligned}$$
(2.13)

Suppose that (2.13) has nontrivial solution \(\phi _k\) and satisfies \(\Vert \phi _k\Vert _{*}=1\). From Lemma 2.1, we know \(\Vert \phi _k\Vert _{*}\) tends to zero as \( k\rightarrow +\infty \), which is a contradiction. Thus problem (2.12) (or (2.13)) only has trivial solution. So we can get unique solvability for problem (2.1). Using Lemma 2.1, the estimates (2.9) can be proved by a standard method. \(\square \)

We can rewrite problem (1.16) as following

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta \phi -(2^*-1)K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-2}\phi = {{\textbf{N}}}(\phi )+{\textbf{l}}_k \\ \qquad \qquad \qquad \qquad +\sum \limits _{j=1}^k\sum \limits _{\ell =1}^3 \Big (\, {c_\ell }U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}+{c_\ell }U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,\Big )\, \; \text {in}\; {\mathbb {R}}^N,\\ \phi \in {\mathbb {E}}, \end{array}\right. } \end{aligned}$$
(2.14)

where

$$\begin{aligned} {{\textbf{N}}}(\phi )=K\Big (\frac{|y|}{{\textbf{r}}}\Big )\Big [\bigl (W_{r,h,\Lambda }+\phi \bigr )^{2^*-1}-W_{r,h,\Lambda }^{2^*-1}-(2^*-1)W_{r,h,\Lambda }^{2^*-2}\phi \Big ], \end{aligned}$$

and

$$\begin{aligned} {\textbf{l}}_k=K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r,h,\Lambda }^{2^*-1}-\sum _{j=1}^k \Big (\, U_{{\overline{x}}_j,\Lambda }^{2^*-1}+U_{{\underline{x}}_j,\Lambda }^{2^*-1} \,\Big ). \end{aligned}$$

Next, we will use the Contraction Mapping Principle to show that problem (2.14) has a unique solution in the set that \(\Vert \phi \Vert _* \) is small enough. Before that, we will give the estimate of \({{\textbf{N}}}(\phi ) \) and \( {\textbf{l}}_k \).

Lemma 2.3

Suppose \( N\ge 5 \). There exists \(C>0\) such that

$$\begin{aligned} \Vert {\textbf{N}}(\phi )\Vert _{**}\le C\Vert \phi \Vert _*^{\min \{2^*-1, 2\}}, \end{aligned}$$

for all \(\phi \in {\mathbb {E}}\).

Proof

The proof is similar to that of Lemma 2.4 in [31]. Here we omit it. \(\square \)

We next give the estimate of \({\textbf{l}}_k\).

Lemma 2.4

Suppose K(|y|) satisfies \(({\textbf{H}})\) and \(N\ge 5\), \((r,h,\Lambda ) \in {{{\mathscr {S}}}_k}\). There exists \(k_0 \) and \(C>0\) such that for all \(k \ge k_0\)

$$\begin{aligned} \Vert \, {\textbf{l}}_k \,\Vert _{**} \le C\max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{m, \frac{m+3}{2}\}}} \Big \}, \end{aligned}$$
(2.15)

where \(\epsilon _1\) is small constant given in (1.14).

Proof

We can rewrite \({\textbf{l}}_{k}\) as

$$\begin{aligned} \begin{aligned} {\textbf{l}}_k \,=\,&K\Big (\frac{|y|}{{\textbf{r}}}\Big ) \Big [\, W_{r,h,\Lambda }^{2^*-1}-\sum _{j=1}^k \Big (\, U_{{\overline{x}}_j,\Lambda }^{2^*-1}+U_{{\underline{x}}_j,\Lambda }^{2^*-1} \,\Big ) \,\Big ] \\&+\sum _{j=1}^k \Big [\ K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1 \,\Big ] \Big (\, U_{{\overline{x}}_j,\Lambda }^{2^*-1}+U_{{\underline{x}}_j,\Lambda }^{2^*-1} \,\Big ):=\, S_1+S_2. \end{aligned} \end{aligned}$$

Assume that \( y \in \Omega _1^+ \), then we get

$$\begin{aligned} S_1&= K\Big (\frac{|y|}{{\textbf{r}}}\Big ) \Big [\, \Big (\, \sum _{j=1}^k U_{{\overline{x}}_j,\Lambda }+U_{{\underline{x}}_j,\Lambda } \,\Big )^{2^*-1}-\sum _{j=1}^k \Big (\, U_{{\overline{x}}_j,\Lambda }^{2^*-1}+U_{{\underline{x}}_j,\Lambda }^{2^*-1} \,\Big ) \,\Big ] \\&\le C K\Big (\frac{|y|}{{\textbf{r}}}\Big ) \Big [U_{{\overline{x}}_1,\Lambda }^{2^*-2}\, \Big (\sum _{j=2}^k U_{{\overline{x}}_j,\Lambda }+\sum _{j=1}^k U_{{\underline{x}}_j,\Lambda }\Big )+\Big (\sum _{j=2}^k U_{{\overline{x}}_j,\Lambda }+\sum _{j=1}^k U_{{\underline{x}}_j,\Lambda }\Big )^{2^*-1}\Big ]. \end{aligned}$$

Thus, we have

$$\begin{aligned} S_1&\le C\frac{1}{(1+|y-{\overline{x}}_1|)^4} \sum _{j=2}^k \frac{1}{(1+|y-{\overline{x}}_j|)^{N-2}}\\&\quad +C\frac{1}{(1+|y-{\overline{x}}_1|)^4} \sum _{j=1}^k \frac{1}{(1+|y-{\underline{x}}_j|)^{N-2}}\\&\quad +C\Bigl (\sum _{j=2}^k \frac{1}{(1+|y-{\overline{x}}_j|)^{N-2}}\Bigr )^{2^*-1} :=\,S_{11}+S_{12}+S_{13}. \end{aligned}$$

We first consider the case \(N=5\). It is easy to get that

$$\begin{aligned} S_{11}\big |_{N=5} \,\le \,&C\frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{7}{2}+ \tau }} \sum _{j=2}^k \frac{1}{|{\overline{x}}_j-{\overline{x}}_1|^{3}} \nonumber \\ \,\le \,&C\frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{7}{2}+ \tau }} \Big (\frac{k}{{\textbf{r}}} \Big )^3. \end{aligned}$$
(2.16)

When \(N\ge 6\), similar to the proof of Lemma B.1, for any \( 1< \alpha _1 < N-2 \), we have

$$\begin{aligned} \sum _{j=2}^k \frac{1}{(1+|y-{\overline{x}}_j|)^{N-2}} \le \frac{C}{(1+|y-{\overline{x}}_1|)^{N-2-\alpha _1}}\,\sum _{j=2}^k \, \frac{1}{|{\overline{x}}_j-{\overline{x}}_1|^{\alpha _1}}. \end{aligned}$$

Since \( \tau \in ( \frac{N-2-m}{N-2}, \frac{N-2-m}{N-2}+ \epsilon _1 ) \), we can choose \(\alpha _1\) satisfies

$$\begin{aligned} \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1<\alpha _1 =\frac{N+2}{2}-\tau <N-2. \end{aligned}$$

Then

$$\begin{aligned} S_{11}\big |_{N\ge 6}&\le \frac{C}{(1+|y-{\overline{x}}_1|)^{N+2-\alpha _1}}\,\sum _{j=2}^k \, \frac{1}{|{\overline{x}}_j-{\overline{x}}_1|^{\alpha _1}} \nonumber \\&\le \frac{C}{(1+|y-{\overline{x}}_1|)^{N+2-\alpha _1}} \, \Big (\frac{k}{{\textbf{r}}\,\sqrt{1-h^2} }\Big )^{\alpha _1}\nonumber \\&\le C\frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}+\tau }}\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 }. \end{aligned}$$
(2.17)

Then combining (2.16) and (2.17), we can get

$$\begin{aligned} \Vert S_{11}\Vert _{**}\le \left\{ \begin{array}{rcl} C\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 },\qquad \text {if}\quad N \ge 6, &{}&{}\\ \qquad \qquad \qquad C\Big (\frac{k}{{\textbf{r}}} \Big )^3,\qquad \text {if} \quad N=5. \end{array}\right. \end{aligned}$$
(2.18)

For \(S_{12}\), we can rewrite it as following

$$\begin{aligned} S_{12}&= C\frac{1}{(1+|y-{\overline{x}}_1|)^4}\Big [\frac{1}{(1+|y-{\underline{x}}_1|)^{N-2}}+\sum _{j=2}^k \frac{1}{(1+|y-{\underline{x}}_j|)^{N-2}}\Big ]\\&\le C\frac{1}{(1+|y-{\overline{x}}_1|)^4}\Big [\frac{1}{(1+|y-{\underline{x}}_1|)^{N-2}}+\sum _{j=2}^k \frac{1}{(1+|y-{\bar{x}}_j|)^{N-2}}\Big ]. \end{aligned}$$

Similarly to (2.16), we can obtain

$$\begin{aligned} S_{12}\big |_{N=5} \,\le \, C\frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{7}{2}+ \tau }} \Big (\frac{k}{{\textbf{r}}} \Big )^3. \end{aligned}$$

For \(N\ge 6\) and the same \(\alpha _1\) as in (2.18), it is easy to derive that

$$\begin{aligned}&\frac{1}{(1+|y-{\overline{x}}_1|)^4}\frac{1}{(1+|y-{\underline{x}}_1|)^{N-2}} \\&\quad \le \Big [\,\frac{1}{(1+|y-{\overline{x}}_1|)^{N+2-\alpha _1}} +\frac{1}{(1+|y-{\underline{x}}_1|)^{N+2-\alpha _1}}\,\Big ]\frac{1}{|{\underline{x}}_1-{\overline{x}}_1|^{ \alpha _1}} \\&\quad \le \frac{C}{(1+|y-{\overline{x}}_1|)^{N+2-\alpha _1}}\,\frac{1}{(hr)^{\alpha _1}} \\&\quad \le C\frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}+\tau }}\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 }, \end{aligned}$$

where we have used the fact \( h r > C \frac{{\textbf{r}}}{k}\). Thus, we can obtain that

$$\begin{aligned} \Vert S_{12}\Vert _{**} \le \left\{ \begin{array}{rcl} C\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 },\qquad \text {if}\quad N \ge 6, &{}&{}\\ \qquad \qquad \qquad C \Big (\frac{k}{{\textbf{r}}} \Big )^3,\qquad \text {if} \quad N=5. \end{array}\right. \end{aligned}$$
(2.19)

Next, we consider \(S_{13}\). For \( y \in \Omega _1^+\),

$$\begin{aligned} \sum _{j=2}^k\, \frac{1}{(1+|y-{\overline{x}}_j|)^{N-2}}&\le \sum _{j=2}^k \frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N-2}{2}}} \, \frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}}}\\&\le \sum _{j=2}^k\,\frac{C}{|{\overline{x}}_j-{\overline{x}}_1|^{\frac{N-2}{2}-\frac{N-2}{N+2}\tau }} \frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N-2}{2}+\frac{N-2}{N+2}\tau }}\\&\le C\Big (\,\frac{k}{{\textbf{r}}\sqrt{1-h^2}}\,\Big )^{\frac{N-2}{2}-\frac{N-2}{N+2}\tau } \frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N-2}{2}+\frac{N-2}{N+2}\tau }}. \end{aligned}$$

Thus we have

$$\begin{aligned} \begin{aligned} S_{13}&\le \, \Big (\, \frac{k}{{\textbf{r}}\sqrt{1-h^2}} \,\Big )^{\frac{N+2}{2}-\tau } \frac{C}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}+\tau }} \\&\le \frac{C}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}+\tau }} \Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1}. \end{aligned} \end{aligned}$$

Since \(\big (\frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1\big )\big |_{N=5} >3\) for \(m\in [2, 3)\), then we have

$$\begin{aligned} \Vert S_{13}\Vert _{**} \le \left\{ \begin{array}{rcl} C\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 },\qquad \text {if}\quad N \ge 6, &{}&{}\\ \qquad \qquad \qquad C \Big (\frac{k}{{\textbf{r}}} \Big )^3,\qquad \text {if} \quad N=5. \end{array}\right. \end{aligned}$$
(2.20)

Combining (2.18), (2.19), (2.20), we obtain

$$\begin{aligned} \Vert S_1\Vert _{**} \le \left\{ \begin{array}{rcl} C \Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 },\qquad \text {if}\quad N \ge 6,\\ \qquad \qquad \qquad C \Big (\frac{k}{{\textbf{r}}} \Big )^3,\qquad \text {if} \quad N=5. \end{array}\right. \end{aligned}$$
(2.21)

We now consider the estimate of \(S_2\). For \( y\in \Omega _1^+ \), we have

$$\begin{aligned} S_2 \,\le \,&2\sum _{j=1}^k \Big [\ K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1 \,\Big ] \, U_{{\overline{x}}_j,\Lambda }^{2^*-1}\\ \,=\,&2\,U_{{\overline{x}}_1,\Lambda }^{2^*-1} \,\Big [K \Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ] +2\,\sum _{j=2}^k \, U_{{\overline{x}}_j,\Lambda }^{2^*-1} \, \Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ]\\ :=\,&S_{21}+S_{22}. \end{aligned}$$
  • If \(|\frac{|y|}{{\textbf{r}}}-1|\ge \delta _1, \) where \( \delta> \delta _1> 0 \), then

    $$\begin{aligned} |y-{\overline{x}}_1| \ge \big ||y |-{\textbf{r}}\big |\,-\,\big |{\textbf{r}} -|{\overline{x}}_1|\big | \ge \frac{1}{2} \delta _1 {\textbf{r}}. \end{aligned}$$

As a result, we get

$$\begin{aligned} U_{{\overline{x}}_1,\Lambda }^{2^{*}-1} \,\Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ]&\le \frac{C}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}+\tau }} \frac{1}{{\textbf{r}}}^{\frac{N+2}{2}-\tau }\\&\le \frac{C}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}+\tau }} \Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _{1} }. \end{aligned}$$
  • If \(|\frac{|y|}{{\textbf{r}}}-1|\le \delta _1,\) then

    $$\begin{aligned} \Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ]&\le C\Big |\frac{|y|}{{\textbf{r}}}-1\Big |^{m} = \frac{C}{{\textbf{r}}}^{{m}}||y|-{\textbf{r}}|^{m}\\&\le \frac{C}{{\textbf{r}}}^{m}\Big [\big ||y|-|{\overline{x}}_1|\big |^{m} \,+\,\big ||{\overline{x}}_1|-{\textbf{r}}\big |^{m}\Big ]\\&\le \frac{C}{{\textbf{r}}}^{m}\Big [\big ||y|-|{\overline{x}}_1|\big |^{m} \,+\,\frac{1}{k^{{{\bar{\theta }} m}}}\Big ]. \end{aligned}$$

Thus, we can get, if \(m>3\),

$$\begin{aligned}&U_{{\overline{x}}_1,\Lambda }^{2^*-1} \,\Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ] \\&\quad \le \frac{C}{{\textbf{r}}}^{m}\Big [\big ||y|-|{\overline{x}}_1|\big |^{m} \,+\,\frac{1}{k^{{{\bar{\theta }} m}}}\Big ] \frac{C}{\big (1+|y-{\overline{x}}_{1}|\big )^{N+2}}\\&\quad \le \frac{C}{{\textbf{r}}}^{\frac{m+3}{2} }\Big [\frac{\big ||y|-|{\overline{x}}_1|\big |^{\frac{m+3}{2} }}{\big (1+|y-{\overline{x}}_{1}|\big )^{N+2}} \,\\ {}&\qquad +\,\frac{1}{{\textbf{r}}}^{\frac{m-3}{2} }\frac{1}{k^{{{\bar{\theta }} m}}}\frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{N+2}} \Big ]\\&\quad \le \frac{C}{{\textbf{r}}}^{\frac{m+3}{2} } \Big [ \frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}+\tau }} \frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}- \tau -\frac{m+3}{2}}} +\frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{N+2}}\Big ]\\&\quad \le \frac{1}{{\textbf{r}}}^{\frac{m+3}{2} } \frac{C}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}+\tau }}, \end{aligned}$$

the last inequality holds due to \(\frac{N+2}{2}- \tau -\frac{m+3}{2}>0.\)

On the other hand, if \(m\le 3\), we have

$$\begin{aligned}&U_{{\overline{x}}_1,\Lambda }^{2^*-1} \,\Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ] \\ {}&\quad \le \frac{C}{{\textbf{r}}}^{m}\Big [\big ||y|-|{\overline{x}}_1|\big |^{m} \,+\,\frac{1}{k^{{{\bar{\theta }} m}}}\Big ] \frac{C}{\big (1+|y-{\overline{x}}_{1}|\big )^{N+2}} \\&\quad \le \frac{C}{{\textbf{r}}}^{m} \Big [ \frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}+\tau }} \frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}- \tau -m }} \\&\qquad +\frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{N+2}}\Big ]\\&\quad \le \frac{C}{{\textbf{r}}}^{m} \frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}+\tau }}, \end{aligned}$$

since \(\frac{N+2}{2}- \tau -m>0.\) Thus we have

$$\begin{aligned} U_{{\overline{x}}_1,\Lambda }^{2^*-1} \,\Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ] \le \frac{C}{{\textbf{r}}}^{ \min \{m, \frac{m+3}{2}\} } \frac{1}{\big (1+|y-{\overline{x}}_{1}|\big )^{\frac{N+2}{2}+\tau }}. \end{aligned}$$

As a result,

$$\begin{aligned} S_{21} \le C\max \Big \{\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 }, \frac{1}{{\textbf{r}}}^{ \min \{m, \frac{m+3}{2}\} } \Big \} \frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}+\tau }}. \nonumber \\ \end{aligned}$$
(2.22)

Since \( y \in \Omega _1^+ \), then for \(j= 2, \ldots , k \), there holds

$$\begin{aligned} |{\overline{x}}_1-{\overline{x}}_j|\le |y-{\overline{x}}_1|+|y-{\overline{x}}_j|\le 2|y-{\overline{x}}_j|. \end{aligned}$$

Therefore, it is easy to derive that

$$\begin{aligned} S_{22}&\le C\frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}}}\sum _{j=2}^k \frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N+2}{2}}} \nonumber \\&\le C \frac{1}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}+\tau }} \sum _{j=2}^k \frac{1}{|{\overline{x}}_1-{\overline{x}}_j|^{\frac{N+2}{2}-\tau }} \nonumber \\&\le \frac{C}{(1+|y-{\overline{x}}_1|)^{\frac{N+2}{2}+\tau }} \Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 }. \end{aligned}$$
(2.23)

Combining (2.22) with (2.23), we obtain

$$\begin{aligned} \Vert S_2\Vert _{**} \le C\max \Big \{\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 }, \frac{1}{{\textbf{r}}}^{ \min \{m, \frac{m+3}{2}\} } \Big \}. \end{aligned}$$

If \(N=5\), we can check that \( \frac{1}{{\textbf{r}}}^{ m}\,=\,\Big (\frac{k}{{\textbf{r}}} \Big )^3 \). Thus, we can rewrite (2.21) as

$$\begin{aligned} \Vert S_1\Vert _{**} \le C\max \Big \{\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 }, \frac{1}{{\textbf{r}}}^{ \min \{m, \frac{m+3}{2}\} } \Big \}. \end{aligned}$$

Therefore, we showed (2.15). \(\square \)

The solvability theory for the projected problem (2.14) can be provided in the following:

Proposition 2.5

Suppose that K(|y|) satisfies \(({\textbf{H}})\) and \(N\ge 5\), \((r,h,\Lambda ) \in {{{\mathscr {S}}}_k}\). There exists an integer \(k_0\) large enough, such that for all \(k \ge k_0\) problem (2.14) has a unique solution \(\phi _k\) which satisfies

$$\begin{aligned} \Vert \phi _k\Vert _{*} \le C\max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{m, \frac{m+3}{2}\}}} \Big \}, \end{aligned}$$
(2.24)

and

$$\begin{aligned}&|c_{\ell }|\le \frac{C}{(1+\delta _{\ell 2}{{\textbf{r}}})}\nonumber \\ {}&\quad \max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{m, \frac{m+3}{2}\}}} \Big \}, \quad {for} ~ \ell =1,2,3. \end{aligned}$$
(2.25)

Proof

We first denote

$$\begin{aligned} {\mathcal {B}}:= \Bigg \{v: v\in {\mathbb {E}} \quad \Vert v\Vert _* \le C\max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{m, \frac{m+3}{2}\}}} \Big \} \Bigg \}. \end{aligned}$$

From Proposition 2.2, we know that problem (2.14) is equivalent to the following fixed point problem

$$\begin{aligned} \phi = {\textbf{L}}_k \big ({{\textbf{N}}}(\phi )+{\textbf{l}}_k\big )= : {\textbf{A}}(\phi ), \end{aligned}$$

where \({\textbf{L}}_k\) is the linear bounded operator defined in Proposition 2.2.

From Lemmas 2.3 and 2.4, we know, for \(\phi \in {\mathcal {B}} \)

$$\begin{aligned} \Vert {\textbf{A}}(\phi )\Vert _*&\le C \Big (\Vert {{\textbf{N}}}(\phi )\Vert _{**}+\Vert {\textbf{l}}_k \Vert _{**}\Big ) \\&\le \, O(\Vert \phi \Vert _*^{1+\sigma } )\\ {}&\quad + \max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{m, \frac{m+3}{2}\}}} \Big \} \\&\le \max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{m, \frac{m+3}{2}\}}} \Big \}. \end{aligned}$$

So the operator \({\textbf{A}}\) maps from \({\mathcal {B}}\) to \({\mathcal {B}}\). Furthermore, we can show that \({\textbf{A}}\) is a contraction mapping. In fact, for any \(\phi _1, \phi _2 \in {\mathcal {B}}\), we have

$$\begin{aligned} \Vert {\textbf{A}}(\phi _1)-{\textbf{A}}(\phi _2) \Vert _* \le C\Vert {{\textbf{N}}}(\phi _1)-{{\textbf{N}}}(\phi _2)\Vert _{**}. \end{aligned}$$

Since \({{\textbf{N}}}(\phi )\) has a power-like behavior with power greater than one, then we can easily get

$$\begin{aligned} \Vert {\textbf{A}}(\phi _1)-{\textbf{A}}(\phi _2) \Vert _* \le o(1)\Vert \phi _1-\phi _2\Vert _*. \end{aligned}$$

A direct application of the contraction mapping principle yields that problem (2.14) has a unique solution \( \phi \in {\mathcal {B}}\). The estimates for \( c_{\ell }, \ell =1,2,3 \) can be got easily from (2.6). \(\square \)

3 Proof of Theorem 1.1

Proposition 3.1

Let \( \phi _{r,h, \Lambda }\) be a function obtained in Proposition 2.5 and

$$\begin{aligned} F(r,h,\Lambda ):= I( W_{r, h, \Lambda }+\phi _{r,h, \Lambda }). \end{aligned}$$

If \((r,h, \Lambda )\) is a critical point of \(F(r,h,\Lambda )\), then

$$\begin{aligned} u= W_{r,h,\Lambda }+\phi _{r,h,\Lambda } \end{aligned}$$

is a critical point of I(u) in \(H^1({\mathbb {R}}^N)\). \(\square \)

We will give the expression of \(F(r,h,\Lambda )\). We first note that we employ the notation \({\mathcal {C}}(r, \Lambda )\) to denote functions which are independent of h and uniformly bounded.

Proposition 3.2

Suppose that K(|y|) satisfies \(({\textbf{H}})\) and \(N\ge 5 \), \((r,h,\Lambda ) \in {{{\mathscr {S}}}_k}\). We have the following expansion as \(k \rightarrow \infty \)

$$\begin{aligned}&F(r,h,\Lambda ) \\ {}&\,=\, I(W_{r, h, \Lambda })+k O \Big (\frac{1}{k^{\big (\frac{m(N-2)}{N-2-m}+\frac{2(N-3)}{N-1}+\sigma \big )}}\Big )\\&\,=\, k A_1 -\frac{k}{\Lambda ^{N-2}} \Big [\,\frac{B_4 k^{N-2}}{(r \sqrt{1-h^2})^{N-2}}\,+\, \frac{B_5 k}{r^{N-2} h^{N-3} \sqrt{1-h^2}}\,\Big ] \\&\quad + k \Big [\frac{A_2}{\Lambda ^{m} k^{\frac{(N-2)m}{N-2-m}}} +\frac{A_3}{\Lambda ^{m-2} k^{\frac{(N-2)m}{N-2-m}}}({\textbf{r}}-r)^2\Big ] +k \frac{{\mathcal {C}}(r, \Lambda )}{k^{\frac{m(N-2)}{N-2-m}}}({\textbf{r}} -r)^{2+\sigma } \\&\quad +k \frac{{\mathcal {C}}(r, \Lambda )}{k^{\frac{m(N-2)}{N-2-m}+\sigma }} +k O\Big (\frac{1}{k^{\big (\frac{m(N-2)}{N-2-m}+\frac{2(N-3)}{N-1}+\sigma \big )}}\Big ), \end{aligned}$$

where \(A_1, A_2, A_3, B_4, B_5\) are positive constants.

Proof

The proof of Proposition 3.2 is similar to that of Proposition 3.1 in [31]. We omit it here. \(\square \)

Next, we will give the expansions of \(\frac{\partial F(r,h, \Lambda )}{\partial \Lambda }\) and \( \frac{\partial F(r,h, \Lambda )}{\partial h} \).

Proposition 3.3

Suppose that K(|y|) satisfies \(({\textbf{H}})\) and \(N\ge 5 \), \((r,h,\Lambda ) \in {{{\mathscr {S}}}_k}\). We have the following expansion for \(k \rightarrow \infty \)

$$\begin{aligned}&\frac{\partial F(r,h, \Lambda )}{\partial \Lambda } \nonumber \\ {}&\quad = \frac{k (N-2)}{\Lambda ^{N-1}} \Big [\frac{B_4 k^{N-2}}{(r \sqrt{1-h^2})^{N-2}}\,+\, \frac{B_5 k}{r^{N-2} h^{N-3} \sqrt{1-h^2}} \Big ] \nonumber \\&\qquad -k \Big [\, \frac{m A_2}{\Lambda ^{m+1} k^{\frac{(N-2)m}{N-2-m}}} +\frac{(m-2)A_3}{\Lambda ^{m-1} k^{\frac{(N-2)m}{N-2-m}}} ({\textbf{r}}-r)^2\,\Big ] +kO \, \Big (\frac{1}{k^{\frac{(N-2)m}{N-2-m}+ \sigma }}\Big ), \end{aligned}$$
(3.1)

where \(A_2, A_3, B_4, B_5\) are positive constants.

Proof

The proof of this proposition can be found in [31]. We omit it here.

\(\square \)

Proposition 3.4

Suppose that K(|y|) satisfies \(({\textbf{H}})\) and \(N\ge 5 \), \((r,h,\Lambda ) \in {{{\mathscr {S}}}_k}\). We have the following expansion

$$\begin{aligned}&\frac{\partial F(r,h, \Lambda )}{\partial h } \nonumber \\ {}&\,=\, -\frac{k}{\Lambda ^{N-2}}\Big [\, (N-2) \frac{B_4 k^{N-2}}{ r^{N-2} (\sqrt{1-h^2})^{N}} h -(N-3) \frac{B_5 k}{r^{N-2} h^{N-2} \sqrt{1-h^2}} \,\Big ] \nonumber \\&\quad \quad +kO\Big (\frac{1}{k^{\big (\frac{m(N-2)}{N-2-m}+\frac{(N-3)}{N-1}+\sigma \big )}}\Big ), \end{aligned}$$
(3.2)

where \( B_4, B_5\) are positive constants.

Proof

Notice that \(F(r,h, \Lambda )\,=\, I( W_{r, h, \Lambda }+\phi _{r,h, \Lambda })\), there holds

$$\begin{aligned}&\frac{\partial F(r,h, \Lambda )}{\partial h } \nonumber \\&\quad =\left\langle I'( W_{r, h, \Lambda }+\phi _{r,h, \Lambda }), \frac{\partial (W_{r, h, \Lambda }+\phi _{r,h, \Lambda }) }{\partial h} \right\rangle \nonumber \\&\quad = \left\langle I'( W_{r, h, \Lambda }+\phi _{r,h, \Lambda }), \frac{\partial W_{r, h, \Lambda } }{\partial h} \right\rangle + \left\langle I'( W_{r, h, \Lambda }+\phi _{r,h, \Lambda }), \frac{\partial \phi _{r,h, \Lambda } }{\partial h}\right\rangle \nonumber \\&\quad = \left\langle I'( W_{r, h, \Lambda }+\phi _{r,h, \Lambda }), \frac{\partial W_{r, h, \Lambda } }{\partial h} \right\rangle \nonumber \\ {}&\qquad + \left\langle \sum \limits _{j=1}^k\sum \limits _{\ell =1}^3 \Big (\, {c_\ell }U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}+{c_\ell }U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,\Big ), \frac{\partial \phi _{r,h, \Lambda } }{\partial h}\right\rangle . \end{aligned}$$
(3.3)

Since \( \int _{{{\mathbb {R}}}^N} U_{{\overline{x}}_j, \Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{\ell j} \phi _{r,h, \Lambda }= \int _{{{\mathbb {R}}}^N} U_{{\underline{x}}_j, \Lambda }^{2^*-2} \underline{{\mathbb {Z}}}_{\ell j} \phi _{r,h, \Lambda }=0\), we can get easily

$$\begin{aligned} \left\langle U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}, \frac{\partial \phi _{r,h, \Lambda } }{\partial h} \right\rangle \,=\, - \left\langle \frac{ \partial (U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j})}{\partial h},\phi _{r,h, \Lambda } \right\rangle , \end{aligned}$$
$$\begin{aligned} \left\langle U_{{\underline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}, \frac{\partial \phi _{r,h, \Lambda } }{\partial h}\ \right\rangle \, =\, -\left\langle \frac{ \partial (U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j})}{\partial h}, \phi _{r,h, \Lambda } \right\rangle . \end{aligned}$$

Then

$$\begin{aligned}&\Bigg \langle \sum \limits _{j=1}^k \Big (\, {c_\ell }U_{{\overline{x}}_j,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell j}+{c_\ell }U_{{\underline{x}}_j,\Lambda }^{2^*-2}\underline{{\mathbb {Z}}}_{\ell j}\,\Big ), \frac{\partial \phi _{r,h, \Lambda } }{\partial h}\Bigg \rangle \nonumber \\&\le C |c_\ell | \Vert \phi _{r,h, \Lambda } \Vert _* \sum \limits _{i=1}^k \int _{{\mathbb {R}}^N} \frac{ \partial (U_{{\overline{x}}_i,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{\ell i})}{\partial h} \nonumber \\ {}&\quad \Biggl ( \sum _{j=1}^k \Big [\frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}\Big ] \Biggr ) \nonumber \\&\le C |c_\ell | \Vert \phi _{r,h, \Lambda } \Vert _* \nonumber \\&\quad \times \sum \limits _{i=1}^k \int _{{\mathbb {R}}^N} \frac{r(1+\delta _{\ell 2}\textbf{r}) }{(1+ |y-{\overline{x}}_i| )^{N+3} } \nonumber \\ {}&\quad \Biggl ( \sum _{j=1}^k \Big [\frac{1}{(1+|y-{\overline{x}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{\underline{x}}_j|)^{\frac{N-2}{2}+\tau }}\Big ] \Biggr ) \nonumber \\&\le C {\textbf{r}} \max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( N+2-2\frac{N-2-m}{N-2}- 2\epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{2m, m+3\}}} \Big \}, \end{aligned}$$
(3.4)

where we used the estimates (2.24)-(2.25) and the inequalities

$$\begin{aligned} \Big | \frac{ \partial \big ( U_{{\overline{x}}_i,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{ \ell i} \big )}{\partial h} \Big | \le C \frac{{\textbf{r}}(1+\delta _{\ell 2} r) }{(1+ |y-{\overline{x}}_i| )^{N+3} }\quad \text {for}~i=1, \ldots ,k, \ell =1,2,3. \end{aligned}$$

On the other hand, we have

$$\begin{aligned}&\Bigg \langle I'( W_{r, h, \Lambda }+\phi _{r,h, \Lambda }), \frac{\partial W_{r, h, \Lambda } }{\partial h} \Bigg \rangle \nonumber \\&= \int _{{\mathbb {R}}^N} \nabla ( W_{r, h, \Lambda }+\phi _{r,h, \Lambda }) \nabla W_{r, h, \Lambda } - \int _{{\mathbb {R}}^N} K\Big (\frac{|y|}{\textbf{r}}\Big ) ( W_{r, h, \Lambda }+\phi _{r,h, \Lambda })^{2^*-1} \frac{\partial W_{r, h, \Lambda } }{\partial h} \nonumber \\&= \int _{{\mathbb {R}}^N} \nabla W_{r, h, \Lambda } \nabla \frac{\partial W_{r, h, \Lambda } }{\partial h} - \int _{{\mathbb {R}}^N} K\Big (\frac{|y|}{{\textbf{r}}}\Big ) ( W_{r, h, \Lambda }+\phi _{r,h, \Lambda })^{2^*-1} \frac{\partial W_{r, h, \Lambda } }{\partial h} \nonumber \\&= \frac{\partial I( W_{r, h, \Lambda }) }{\partial h} + (2^*-1) \int _{{\mathbb {R}}^N} K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r, h, \Lambda }^{2^*-2} \frac{\partial W_{r, h, \Lambda } }{\partial h} \phi _{r,h, \Lambda } + O\Big ( \int _{{\mathbb {R}}^N} \phi _{r,h, \Lambda }^2 \Big ). \end{aligned}$$
(3.5)

For the second term in (3.5), using the decay property of K(|y|) and orthogonality of \(\phi _{r, h, \Lambda }\), we can show this term is small. In fact, we have

$$\begin{aligned}&\int _{{\mathbb {R}}^N} K\Big (\frac{|y|}{{\textbf{r}}}\Big ) W_{r, h, \Lambda }^{2^*-2} \frac{\partial W_{r, h, \Lambda } }{\partial h} \phi _{r,h, \Lambda }\\&= \int _{{\mathbb {R}}^N} K\Big (\frac{|y|}{{\textbf{r}}}\Big ) \Big [ W_{r, h, \Lambda }^{2^*-2} \frac{\partial W_{r, h, \Lambda } }{\partial h} - \sum _{i=1}^k \big (U_{{\overline{x}}_i,\Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{2i} + U_{{\underline{x}}_i,\Lambda }^{2^*-2} \underline{{\mathbb {Z}}}_{2i} \big ) \Big ] \phi _{r,h, \Lambda } \\&\quad + \sum _{i=1}^k \int _{{\mathbb {R}}^N} \Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ] \big (U_{{\overline{x}}_i,\Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{2i} + U_{{\underline{x}}_i,\Lambda }^{2^*-2} \underline{{\mathbb {Z}}}_{2i} \big ) \phi _{r,h, \Lambda } \\&= 2k \int _{\Omega ^+_1} K\Big (\frac{|y|}{{\textbf{r}}}\Big ) \Big [ W_{r, h, \Lambda }^{2^*-2} \frac{\partial W_{r, h, \Lambda } }{\partial h} - \sum _{i=1}^k \big (U_{{\overline{x}}_i,\Lambda }^{2^*-2} \overline{{\mathbb {Z}}}_{2i} + U_{{\underline{x}}_i,\Lambda }^{2^*-2} \underline{{\mathbb {Z}}}_{2i} \big ) \Big ] \phi _{r,h, \Lambda } \\&\quad + 2k \int _{{\mathbb {R}}^N} \Big [K\Big (\frac{|y|}{\textbf{r}}\Big )-1\Big ] U_{{\overline{x}}_1,\Lambda }^{2^*-2}\overline{{\mathbb {Z}}}_{21} \phi _{r,h, \Lambda }. \end{aligned}$$

According to the expression of \(W_{r, h, \Lambda }\), we can obtain that

$$\begin{aligned}&\int _{\Omega ^+_1}K\left( \frac{|y|}{{\textbf{r}}}\right) \,\Big [ W_{r, h, \Lambda }^{2^*-2} \frac{\partial W_{r, h, \Lambda } }{\partial h} \,-\,\sum _{i=1}^k \big (U_{{{\overline{x}}}_i,\Lambda }^{2^*-2} \overline{{{\mathbb {Z}}}}_{2i} + U_{{{\underline{x}}}_i,\Lambda }^{2^*-2} \underline{{{\mathbb {Z}}}}_{2i} \Big ] \phi _{r,h, \Lambda } \\&\quad \le C \int _{\Omega ^+_1} \Big [ U_{{{\overline{x}}}_1,\Lambda }^{2^*-2} \left( \sum _{j=2 }^k \overline{{{\mathbb {Z}}}}_{2j} \,+\,\sum _{j=1 }^k \underline{{{\mathbb {Z}}}}_{2j} \right) + \left( \sum _{i=2}^k U_{{{\overline{x}}}_i,\Lambda }^{2^*-2} \overline{{{\mathbb {Z}}}}_{2i} +\sum _{i=1}^k U_{{{\underline{x}}}_i,\Lambda }^{2^*-2}\underline{{{\mathbb {Z}}}}_{2i} \right) \Big ] \phi _{r,h, \Lambda } \\&\quad \le C\Big (\frac{k}{{\textbf{r}}}\Big )^{\frac{N+2}{2} -\tau } \int _{\Omega ^+_1} \frac{\textbf{r}}{\big (1+|y-{{\overline{x}}}_{1}|\big )^{\frac{N}{2}+2+\tau }} \phi _{r,h, \Lambda } \\&\quad \le C \Big (\frac{k}{{\textbf{r}}}\Big )^{\frac{N+2}{2} -\tau } \Vert \phi _{r,h, \Lambda } \Vert _* \int _{\Omega ^+_1} \frac{\textbf{r}}{\big (1+|y-{{\overline{x}}}_{1}|\big )^{\frac{N}{2}+2+\tau }} \\ {}&\qquad \times \Bigl ( \sum _{j=1}^k \Big [\frac{1}{(1+|y-{{\overline{x}}}_j|)^{\frac{N-2}{2}+\tau }}+\frac{1}{(1+|y-{{\underline{x}}}_j|)^{\frac{N-2}{2}+\tau }}\Big ] \Bigr ) \\&\quad \le C {\textbf{r}} \Big (\frac{k}{{\textbf{r}}}\Big )^{\frac{N+2}{2} -\tau } \Vert \phi _{r,h, \Lambda } \Vert _* \le C {\textbf{r}} \Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 } \\ {}&\qquad \max \Big \{\Big (\frac{k}{{\textbf{r}}} \Big )^{ \frac{N+2}{2}-\frac{N-2-m}{N-2}- \epsilon _1 }, \frac{1}{{\textbf{r}}}^{ \min \{m, \frac{m+3}{2}\} } \Big \} \\&\quad \le C {\textbf{r}} \max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( N+2-2\frac{N-2-m}{N-2}- 2\epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{2m, m+3\}}} \Big \}. \end{aligned}$$

And it’s easy to show that

$$\begin{aligned}&\int _{{\mathbb {R}}^N} \Big [K\Big (\frac{|y|}{{\textbf{r}}}\Big )-1\Big ] U_{{\overline{x}}_1,\Lambda }^{2^*-2} \,\overline{{\mathbb {Z}}}_{21}\,\phi _{r,h, \Lambda } \\&\quad \le C {\textbf{r}} \max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( N+2-2\frac{N-2-m}{N-2}- 2\epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{2m, m+3\}}} \Big \}. \end{aligned}$$

Combining all above, we can get

$$\begin{aligned}&\frac{\partial F(r,h, \Lambda )}{\partial h }= \frac{\partial I(W_{r,h,\Lambda })}{\partial h} \nonumber \\&\qquad + kO\Big ( {\textbf{r}} \max \Big \{ \frac{1}{k^{(\frac{m}{N-2-m})( N+2-2\frac{N-2-m}{N-2}- 2\epsilon _1 )}}, \frac{1}{k^{(\frac{N-2}{N-2-m}) \min \{2m, m+3\}}} \Big \} \Big ). \end{aligned}$$
(3.6)

Combing (3.6), Proposition A.6 and Lemma B.6, we can get (3.2) \(\square \)

Remark 3.5

The expansions of \(\frac{\partial F(r,h, \Lambda )}{\partial h}\) and \(\frac{\partial F(r,h, \Lambda )}{\partial \Lambda }\) would be applied in the proof of Proposition 3.6, which is essential for proving the existence critical point of \(F(r,h, \Lambda )\). In order to get a proper expansion of \(\frac{\partial F(r,h, \Lambda )}{\partial h}\), we need accurate estimates for \(\phi _{r,h, \Lambda } \). \(\square \)

Rewritten the expansion of the energy functional.

Let \(\Lambda _0\) be

$$\begin{aligned} \Lambda _0=\Big [\,\frac{(N-2) B_4}{A_2 m}\,\Big ]^{\frac{1}{N-2-m}}. \end{aligned}$$
(3.7)

Then it solves

$$\begin{aligned}\frac{B_4(N-2)}{\Lambda ^{N-1}}- \frac{A_{2} m}{\Lambda ^{m+1}}=0.\end{aligned}$$

Denote

$$\begin{aligned} {\mathcal {G}}(h)&:= \frac{B_4 k^{N-2}}{(\sqrt{1-h^2})^{N-2}}\,+\, \frac{B_5 k}{h^{N-3} \sqrt{1-h^2}}, \end{aligned}$$

then

$$\begin{aligned} {\mathcal {G}} '(h)&= (N-2) \frac{B_4 k^{N-2}h}{(\sqrt{1-h^2})^{N}} \,-\,(N-3) \frac{B_5 k}{h^{N-2} \sqrt{1-h^2}} \,+\,h \frac{B_5 k}{h^{N-4}({1-h^2})^{\frac{3}{2}}} \\&= (N-2)B_4 k^{N-2} h \big [\,1+O(h^2)\,\big ] \\&\quad -(N-3) \frac{B_5 k}{h^{N-2}} \big [\,1+O(h^2)\,\big ]+\frac{B_5 k}{h^{N-4}} \big [\,1+O(h^2)\,\big ] \\&=\Big [(N-2) B_4 k^{N-2} h-(N-3) \frac{B_5 k}{h^{N-2}}\Big ]+O\Big (\frac{k}{h^{N-4}}\Big ), \end{aligned}$$

and

$$\begin{aligned} {\mathcal {G}} ''(h) \,=\,&(N-2)\frac{B_4 k^{N-2}}{(\sqrt{1-h^2})^{N}} +(N-2) N\frac{B_4 k^{N-2}h^2}{(\sqrt{1-h^2})^{N+2}} \nonumber \\&+(N-3)(N-2)\frac{B_5 k}{h^{N-1} \sqrt{1-h^2}} -(N-3)\frac{B_5 k}{h^{N-3}({1-h^2})^{\frac{3}{2}}} \nonumber \\&-(N-4)\frac{B_5 k}{h^{N-3}({1-h^2})^{\frac{3}{2}}} +\frac{3B_5 k}{h^{N-5}({1-h^2})^{\frac{5}{2}}}\nonumber \\ \,=\,&(N-2) B_4 k^{N-2} +(N-3)(N-2)\frac{B_5 k}{h^{N-1}} +O\big (h^2 k^{N-2}\big )+O\Big (\frac{k}{h^{N-3}}\Big ), \end{aligned}$$
(3.8)

and

$$\begin{aligned} {\mathcal {G}} '''(h)\,=\, O \Big (\frac{k}{h^{N}}\Big ). \end{aligned}$$
(3.9)

Let \( {\textbf{h}}\) be a solution of

$$\begin{aligned} \Big [(N-2) B_4 k^{N-2} h-(N-3) \frac{B_5 k}{h^{N-2}}\Big ]=0, \end{aligned}$$

then

$$\begin{aligned} {\textbf{h}} = \frac{B'}{k^{\frac{N-3}{N-1}}}, \quad \text {with} ~B'= \Big [\frac{(N-3) B_5}{(N-2) B_4}\Big ]^{\frac{1}{N-1}}. \end{aligned}$$
(3.10)

Define

$$\begin{aligned} {{\textbf{S}}_k} =\Bigg \{&(r,h,\Lambda ) \big |\, r\in \Big [k^{\frac{N-2}{N-2-m}}-\frac{1}{{k^{{\bar{\theta }}}}}, k^{\frac{N-2}{N-2-m}}+\frac{1}{{k^{{\bar{\theta }}}}} \Big ], \quad \Lambda \in \Big [\Lambda _0-\frac{1}{{k^{\frac{3 {\bar{\theta }}}{2}}}}, \Lambda _0+\frac{1}{{k^{\frac{3 {\bar{\theta }}}{2}}}}\Big ], \\&\qquad \qquad h \in \Big [\frac{B'}{k^{\frac{N-3}{N-1}}} \Big (1-\frac{1}{k^{{\bar{\theta }}}}\Big ),\frac{B'}{k^{\frac{N-3}{N-1}}} \Big (1+\frac{1}{k^{{\bar{\theta }}}}\Big )\Big ] \Bigg \}, \end{aligned}$$

for \({\bar{\theta }}\) is a small constant such that \({\bar{\theta }} \le \frac{\sigma }{100}\). In fact, \( {{\textbf{S}}_k}\) is a subset of \({{{\mathscr {S}}}_k}\). We will find a critical point of \(F(r, h, \Lambda )\) in \({{\textbf{S}}}_k\).

A direct Taylor expansion gives that

$$\begin{aligned} {\mathcal {G}}(h)=&{\mathcal {G}}({\textbf{h}})+{\mathcal {G}} '({\textbf{h}}) (h-{\textbf{h}})+ \frac{1}{2} {\mathcal {G}} '' ({\textbf{h}}) (h-\textbf{h})^2+O\Big ({\mathcal {G}} ''' \big ({\textbf{h}}+(1-\iota ) h \big )\Big )(h-{\textbf{h}})^3, \end{aligned}$$
(3.11)

where

$$\begin{aligned} {\mathcal {G}}({\textbf{h}}) = B_4 k^{N-2} \Big [1+\frac{N-2}{2} {\textbf{h}}^2+O({\textbf{h}}^4)\Big ] +\frac{B_5 k}{{\textbf{h}}}^{N-3} \Big [1+\frac{1}{2}{\textbf{h}}^2+O({\textbf{h}}^4)\Big ], \end{aligned}$$
$$\begin{aligned} {\mathcal {G}}'({\textbf{h}}) = O\Big (\frac{k}{{\textbf{h}}}^{N-4}\Big ) \end{aligned}$$

and

$$\begin{aligned} {\mathcal {G}} '' ({\textbf{h}}) = \frac{(N-2)}{2} \Big [B_4 k^{N-2}+(N-3) \frac{B_5 k}{{\textbf{h}}}^{N-1} \Big ] + O\big ({\textbf{h}}^2 k^{N-2}\big ). \end{aligned}$$

Since \({\mathcal {G}}({\textbf{h}}), {\mathcal {G}} '' ({\textbf{h}}) \) are independent of \(h, r, \Lambda \), for simplicity, in the following, we will denote

$$\begin{aligned} {\mathcal {G}}({\textbf{h}}) = B_4 k^{N-2} + \frac{(N-2)B_4}{2} k^{N-2}{\textbf{h}}^2 +\frac{B_5 k}{{\textbf{h}}^{N-3}}, \end{aligned}$$
(3.12)
$$\begin{aligned} {\mathcal {G}} '' ({\textbf{h}}) = \frac{(N-2)}{2} \Big [B_4 k^{N-2}+(N-3) \frac{B_5 k}{{\textbf{h}}}^{N-1} \Big ] . \end{aligned}$$
(3.13)

Then combining (3.11), (3.12), (3.13), we can get

$$\begin{aligned} {\mathcal {G}}(h) =&B_4 k^{N-2} + \frac{(N-2)B_4}{2} k^{N-2}{\textbf{h}}^2 +\frac{B_5 k}{{\textbf{h}}}^{N-3} + O\Big (\frac{k}{{\textbf{h}}}^{N-4}\Big ) (h-{\textbf{h}}) \\&+\frac{(N-2)}{2} \Big [B_4 k^{N-2}+(N-3) \frac{B_5 k}{{\textbf{h}}}^{N-1} \Big ](h-{\textbf{h}})^2 +O\Big (\frac{k}{{\textbf{h}}}^{N}\Big ) (h-{\textbf{h}})^3. \end{aligned}$$

Therefore, we get

$$\begin{aligned} {\mathcal {G}}(h)&= B_4 k^{N-2}+\Big [\frac{(N-2) B_4 {B'}^2}{2}+\frac{B_5}{{B'}^{N-3}}\Big ] \frac{k^{N-2}}{k^{\frac{2(N-3)}{N-1}}} \nonumber \\&\quad +\frac{(N-2)}{2} \Big [B_4 {B'}^2+\frac{(N-3) B_5}{{B'}^{N-3}} \Big ] \frac{k^{N-2}}{k^{\frac{2(N-3)}{N-1}}}(1-{\textbf{h}}^{-1} h)^2 \nonumber \\&\quad +O \Big (\frac{k^{N-2}}{k^{\frac{2(N-3)}{N-1}}}\Big ) (1-{\textbf{h}}^{-1} h)^3 \nonumber \\&= B_4 k^{N-2}+B_6 \frac{k^{N-2}}{k^{\frac{2(N-3)}{N-1}}} +B_7 \frac{k^{N-2}}{k^{\frac{2(N-3)}{N-1}}} (1-{\textbf{h}}^{-1} h)^2 \nonumber \\ {}&\quad +O \Big (\frac{k^{N-2}}{k^{\frac{2(N-3)}{N-1}}}\Big ) (1-{\textbf{h}}^{-1} h)^3, \end{aligned}$$
(3.14)

where

$$\begin{aligned} B_6= \frac{(N-2) B_4 {B'}^2}{2}+\frac{B_5}{{B'}^{N-3}}, \quad B_7= \frac{(N-2)}{2} \Big [B_4 {B'}^2 +\frac{(N-3) B_5}{{B'}^{N-3}} \Big ]. \end{aligned}$$

Since

$$\begin{aligned} r\in \Big [k^{\frac{N-2}{N-2-m}}-\frac{1}{k^{{\bar{\theta }}}}, \quad k^{\frac{N-2}{N-2-m}}+\frac{1}{k^{{\bar{\theta }}}}\Big ], \end{aligned}$$

then

$$\begin{aligned} r^{N-2}= k^{\frac{(N-2)^2}{N-2-m}} \Big (1+\frac{{\mathcal {C}}(r, \Lambda )}{{k^{\frac{(N-2)}{N-2-m}+{\bar{\theta }}}}}\Big ). \end{aligned}$$

We now rewrite

$$\begin{aligned}&\frac{B_4 k^{N-2}}{(r \sqrt{1-h^2})^{N-2}}\,+\,\frac{B_5 k}{r^{N-2} h^{N-3}\sqrt{1-h^2}} \\&\quad =\frac{B_4}{k^{\frac{(N-2)m}{N-2-m}}}+\frac{B_6}{k^{\frac{(N-2)m}{N-2-m}+\frac{2(N-3)}{N-1}}}+\frac{\mathcal {C}(r, \Lambda )}{k^{\frac{(N-2)m}{N-2-m}+\sigma }} \\&\qquad +\frac{B_7}{k^{\frac{(N-2)m}{N-2-m}+\frac{2(N-3)}{N-1}}} (1-{\textbf{h}}^{-1} h)^2+O \Big (\frac{1}{k^{\frac{(N-2)m}{N-2-m}+\frac{2(N-3)}{N-1}}}\Big ) (1-{\textbf{h}}^{-1} h)^3. \end{aligned}$$

Then we can express \( F(r,h, \Lambda )\) as

$$\begin{aligned}&F(r,h,\Lambda )=k A_1 -k \Big [\frac{B_4}{\Lambda ^{N-2} k^{\frac{(N-2)m}{N-2-m}}}+\frac{B_6}{\Lambda ^{N-2} k^{\frac{(N-2)m}{N-2-m}+\frac{2(N-3)}{N-1}}} \nonumber \\&\quad +\frac{B_7}{\Lambda ^{N-2} k^{\frac{(N-2)m}{N-2-m}+\frac{2(N-3)}{N-1}}} (1-{\textbf{h}}^{-1} h)^2\Big ] \nonumber \\&\quad +k \Big [\frac{A_2}{\Lambda ^{m} k^{\frac{(N-2)m}{N-2-m}}}+\frac{A_3}{\Lambda ^{m-2} k^{\frac{(N-2)m}{N-2-m}}}({\textbf{r}}-r)^2\Big ] +k\frac{{\mathcal {C}}(r, \Lambda )}{k^{\frac{(N-2)m}{N-2-m}}} ({\textbf{r}}-r)^{2+\sigma } \nonumber \\&\quad +k O \Big (\frac{1}{k^{\frac{(N-2)m}{N-2-m}+\frac{2(N-3)}{N-1}}}\Big ) (1-{\textbf{h}}^{-1} h)^3+ k O\Big (\frac{1}{k^{\big (\frac{m(N-2)}{N-2-m}+\frac{2(N-3)}{N-1}+\sigma \big )}}\Big ). \end{aligned}$$
(3.15)

And similarly, we have

$$\begin{aligned} \frac{\partial F(r,h,\Lambda )}{\partial \Lambda } \,=\,&k \Big [\frac{ (N-2) B_4}{\Lambda ^{N-1} k^{\frac{(N-2)m}{N-2-m}}} - \frac{m A_2}{\Lambda ^{m+1} k^{\frac{(N-2)m}{N-2-m}}} \Big ] \\&+\frac{(m-2)A_3}{\Lambda ^{m-1} k^{\frac{(N-2)m}{N-2-m}}} ({\textbf{r}}-r)^2 +kO \, \Big (\frac{1}{k^{\frac{(N-2)m}{N-2-m}}} ({\textbf{r}}-r)^{2+\sigma }\Big ); \end{aligned}$$

and from (A.28), by using some calculations, we have

$$\begin{aligned} \frac{\partial F(r,h, \Lambda )}{\partial h }&\,=\, \frac{k}{\Lambda ^{N-2}}\Big [\, \frac{2B_7}{\Lambda ^{N-2} k^{\frac{(N-2)m}{N-2-m}+\frac{(N-3)}{N-1}}} (1-{\textbf{h}}^{-1} h) \,\Big ] \nonumber \\&\quad +kO\Big (\frac{1}{k^{\big (\frac{m(N-2)}{N-2-m}+\frac{(N-3)}{N-1} \big )}}\Big ) (1-{\textbf{h}}^{-1} h)^2 \nonumber \\ {}&\quad +kO\Big (\frac{1}{k^{\big (\frac{m(N-2)}{N-2-m}+\frac{(N-3)}{N-1}+\sigma \big )}}\Big ). \end{aligned}$$
(3.16)

Now define

$$\begin{aligned} {\bar{F}}(r,h,\Lambda )=-F(r,h,\Lambda ), \end{aligned}$$
(3.17)

and

$$\begin{aligned}{\textbf{t}}_2= k (-A_1+\eta _1), \quad {\textbf{t}}_1 = k \left( -A_1 -\left( \frac{A_2}{\Lambda _0^{m}} - \frac{B_4}{\Lambda _0^{N-2}} \right) \frac{1}{k^{\frac{(N-2)m}{N-2-m}}} -\frac{1}{k^{\frac{(N-2) m}{N-2-m}+\frac{5 {\bar{\theta }}}{2}}}\right) , \end{aligned}$$

where \(\eta _1>0 \) small. We also define the energy level set

$$\begin{aligned} {{\bar{F}}}^{\textbf{t}}= \Big \{(r,h,\Lambda ) \big |~(r,h,\Lambda ) \in {{\textbf{S}}}_k, ~ {{\bar{F}}} (r,h,\Lambda ) \le {\textbf{t}} \Big \}. \end{aligned}$$

We consider the following gradient flow system

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{{\mathrm d} r}{{\mathrm d} t}=-{{{\bar{F}}}}_r, &{}t>0;\\ \frac{{\mathrm d} h}{{\mathrm d} t}=-{{{\bar{F}}}}_h, &{}t>0;\\ \frac{{\mathrm d} \Lambda }{{\mathrm d} t}=-{{{\bar{F}}}}_\Lambda , &{}t>0;\\ (r,h,\Lambda ) \big |_{t=0} \in {{\bar{F}}}^{{\textbf{t}}}_2. \end{array}\right. } \end{aligned}$$

The next proposition would play an important role in the proof of Theorem 1.1.

Proposition 3.6

The flow would not leave \( {{\textbf{S}}}_k \) before it reaches \( {{\bar{F}}}^{{\textbf{t}}}_1. \)

Proof

There are three positions that the flow tends to leave \( {\textbf{S}}_k \):

position 1. \(|r-{\textbf{r}}|= \frac{1}{k^{{\bar{\theta }}}} \) and \(|1-{\textbf{h}}^{-1} h| \le \frac{1}{k^{{\bar{\theta }}}}, \quad |\Lambda -\Lambda _0|\le \frac{1}{k^{\frac{3 {\bar{\theta }}}{2}}} \);

position 2. \(|1-{\textbf{h}}^{-1} h|= \frac{1}{k^{{\bar{\theta }}}} \) when \(|r-{\textbf{r}}| \le \frac{1}{k^{{\bar{\theta }}}}, \quad |\Lambda -\Lambda _0|\le \frac{1}{k^{\frac{3 {\bar{\theta }}}{2}}} \);

position 3. \(| \Lambda -\Lambda _0|= \frac{1}{k^{\frac{3 {\bar{\theta }}}{2}}} \) when \(|r-{\textbf{r}}| \le \frac{1}{k^{{\bar{\theta }}}}, \quad |1-{\textbf{h}}^{-1} h| \le \frac{1}{k^{{\bar{\theta }}}}. \)

\(\spadesuit \) We now consider position 1. Since \(|\Lambda -\Lambda _0|\le \frac{1}{k^{\frac{3 {\bar{\theta }}}{2}}} \), it is easy to derive that

$$\begin{aligned} \begin{aligned} \Big (\frac{B_4}{\Lambda ^{N-2}} - \frac{A_2}{\Lambda ^{m}}\Big )&= \Big (\frac{B_4}{\Lambda _0^{N-2}} - \frac{A_2}{\Lambda _0^{m}}\Big )+O(|\Lambda -\Lambda _0|^2)\\&=\Big (\frac{B_4}{\Lambda _0^{N-2}} - \frac{A_2}{\Lambda _0^{m}}\Big )+O\Big (\frac{1}{k^{3 {\bar{\theta }}}}\Big ). \end{aligned} \end{aligned}$$
(3.18)

Combining (3.15), (3.17), (3.18), we can obtain that, if \((r,h,\Lambda ) \) lies in position 1,

$$\begin{aligned} {{\bar{F}}}(r,h,\Lambda )&=-k A_1+k \Big [\frac{B_4}{\Lambda _0^{N-2} k^{\frac{(N-2)m}{N-2-m}}} - \frac{A_2}{\Lambda _0^{m} k^{\frac{(N-2)m}{N-2-m}}} \Big ] \nonumber \\&\quad - k \frac{A_3}{\Lambda _0^{m-2} k^{\frac{(N-2) m}{N-2-m}+2 {\bar{\theta }}}} +O\Big (\frac{1}{k^{\frac{(N-2) m}{N-2-m}+\frac{5 {\bar{\theta }}}{2}}}\Big ) <{\textbf{t}}_1. \end{aligned}$$

\(\spadesuit \) On the other hand, we claim that it’s impossible for the flow \(\big (r(t), h(t), \Lambda (t)\big )\) leaves \({{\textbf{S}}}_k\) when it lies in position 2. If \(1-{\textbf{h}}^{-1} h= \frac{1}{k^{{\bar{\theta }}}} \), then from (3.16) and (3.17), we have

$$\begin{aligned} \frac{\partial {{\bar{F}}}(r,h,\Lambda )}{\partial h} = -\frac{k}{\Lambda ^{N-2}}\Big [\, \frac{2B_7}{\Lambda ^{N-2} k^{\frac{(N-2)m}{N-2-m}+\frac{(N-3)}{N-1} +{\bar{\theta }}}} \,\Big ] + O\Big (\frac{1}{k^{\frac{(N-2) m}{N-2-m}+ \frac{N-3}{N-1} +2 \bar{\theta }}}\,\Big ) <0. \end{aligned}$$
(3.19)

On the other hand, if \(1-{\textbf{h}}^{-1} h= -\frac{1}{k^{{\bar{\theta }}}} \)

$$\begin{aligned} \frac{\partial {{\bar{F}}}(r,h,\Lambda )}{\partial h} = \frac{k}{\Lambda ^{N-2}}\Big [\, \frac{2B_7}{\Lambda ^{N-2} k^{\frac{(N-2)m}{N-2-m}+\frac{(N-3)}{N-1} +{\bar{\theta }}}} \,\Big ] + O\Big (\frac{1}{k^{\frac{(N-2) m}{N-2-m}+ \frac{N-3}{N-1} +2 \bar{\theta }}}\,\Big ) >0. \end{aligned}$$
(3.20)

So it’s impossible for the flow leaves \({{\textbf{S}}}_k\) when it lies in position 2.

\(\spadesuit \) Finally, we consider position 3. If \(\Lambda =\Lambda _0+\frac{1}{k^{\frac{3 {\bar{\theta }}}{2}}} \), from (3.1) and (3.17), there exists a constant \( C_1 \) such that

$$\begin{aligned} \frac{\partial {{\bar{F}}}(r,h,\Lambda )}{\partial \Lambda } = k\Big [\,C_1 \frac{1}{k^{\frac{(N-2) m}{N-2-m}+\frac{3}{2} {\bar{\theta }}}} +O\Big (\frac{1}{k^{\frac{(N-2) m}{N-2-m}+2 {\bar{\theta }}}}\Big )\,\Big ] >0. \end{aligned}$$

On the other hand, if \(\Lambda =\Lambda _0-\frac{1}{k^{\frac{3 \bar{\theta }}{2}}}\), there exists a constant \(C_2\) such that

$$\begin{aligned} \frac{\partial {{\bar{F}}}(r,h,\Lambda )}{\partial \Lambda } = k\Big [\,-C_2 \frac{1}{k^{\frac{(N-2) m}{N-2-m}+\frac{3}{2} {\bar{\theta }}}} +O\Big (\frac{1}{k^{\frac{(N-2) m}{N-2-m}+2 {\bar{\theta }}}}\,\Big )\Big ]<0. \end{aligned}$$

Hence the flow \( \big (r(t), h(t), \Lambda (t)\big )\) does not leave \({{\textbf{S}}}_k\) when \(| \Lambda -\Lambda _0|= \frac{1}{k^{\frac{3 {\bar{\theta }}}{2}}}\).

Combining above results, we conclude that the flow would not leave \({{\textbf{S}}}_k\) before it reach \( {\bar{F}}^{{\textbf{t}}}_1\). \(\square \)

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1

: According to Proposition 3.1, in order to show Theorem 1.1, we only need to show that function \({{\bar{F}}}(r,h, \Lambda )\), and thus \(F(r,h, \Lambda )\), has a critical point in \({{\textbf{S}}}_k\).

Define

$$\begin{aligned} \begin{aligned} \Gamma =\Bigl \{\gamma :\quad&\gamma (r,h,\Lambda )= \big (\gamma _1(r,h,\Lambda ),\gamma _2(r,h,\Lambda ),\gamma _3(r,h,\Lambda )\big )\in {{\textbf{S}}}_k,(r,h,\Lambda )\in {{\textbf{S}}}_k; \\&\gamma (r,h,\Lambda )=(r,h,\Lambda ), \;\text {if} ~|r-{\textbf{r}}|= \frac{1}{k^{{\bar{\theta }}}} \Bigr \}. \end{aligned} \end{aligned}$$

Let

$$\begin{aligned} {\textbf{c}}=\inf _{\gamma \in \Gamma }\max _{(r,h,\Lambda )\in {{\textbf{S}}}_k} {{\bar{F}}} \big (\gamma (r,h,\Lambda )\big ). \end{aligned}$$

We claim that \( {\textbf{c}} \) is a critical value of \( {{\bar{F}}}(r,h, \Lambda ) \) and can be achieved by some \((r,h, \Lambda ) \in {\textbf{S}}_k \). By the minimax theory, we need to show that

  1. (i)

    \( {\textbf{t}}_1< {\textbf{c}} < {\textbf{t}}_2 \);

  2. (ii)

    \(\sup _{|r-{\textbf{r}}|= \frac{1}{k^{{\bar{\theta }}}}} {{{\bar{F}}}}\big (\gamma (r,h,\Lambda )\big )<{\textbf{t}}_1,\;\forall \; \gamma \in \Gamma . \)

Using the results in Proposition 3.6 we can prove (i) and (ii) easily.

Finally, for every k large enough, we get the critical point \((r_k, h_k, \Lambda _k) \) of \( F(r,h,\Lambda ) \). \(\square \)