Skip to main content
Log in

Boundary regularity of stationary critical points for a Cosserat energy functional

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we will discuss the boundary regularity of stationary critical points for the following Cosserat energy functional:

$$\begin{aligned} {\textrm{Coss}}(\phi , R)=\int _\Omega \big (|R^t\nabla \phi -I_3|^2+|\nabla R|^p+\langle \phi -x, f\rangle +\langle R, M\rangle \big )\,dx, \end{aligned}$$
(0.1)

where \(2\le p<3\), \(f\in L^{\infty }(\Omega , {\mathbb {R}}^3)\), \(M\in L^{\infty }(\Omega , SO(3))\), and \(\Omega \subset \mathbb {R}^3\) is a domain with \(C^1\) boundary. Precisely, if \((\phi , R)\in H^1(\Omega ,{\mathbb {R}}^3)\times W^{1,p}(\Omega , SO(3))\) is a stationary critical point of (0.1) satisfying a certain boundary monotonicity inequality, we show that there exists a closed subset \(\Sigma \subset \partial \Omega \) satisfying the Hausdorff measure \(H^{3-p}(\Sigma )=0\) such that \((\phi , R)\in C^{1,\alpha }(\Omega _{\delta }\setminus \Sigma )\times C^\alpha (\Omega _{\delta }\setminus \Sigma )\), where \(\Omega _{\delta }:=\{x\in {\bar{\Omega }}, dist(x,\partial \Omega )\le \delta \}\), \(\delta >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethuel, F.: On the singular set of stationary harmonic maps. Manu. Math. 78, 417–443 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581–597 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, S.C., Chen, J.T., Wei, S.W.: Liouville properties for \(p\)-harmonic maps with finite \(q\)-energy. Trans. AMS 368, 787–825 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. 66, 965–990 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique (Paris: Hermann, 1909)

  6. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions, Revised Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015)

  8. Fuchs, M.: \(p\)-harmonic obstacle problems. I. Partial regularity theory. Ann. Mat. Pura Appl. 156, 127–158 (1990)

  9. Gastel, A.: Regularity issues for Cosserat continua and p-harmonic maps. SIAM J. Math. Anal. 51, 4287–4310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giaquinta, M., Giusti, E.: The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11, 45–55 (1984)

  11. Hardt, R., Lin, F.H.: Mappings minimizing the \(L^p\) norm of the gradient. Commun. Pure Appl. Math. 40, 555–588 (1987)

    Article  MATH  Google Scholar 

  12. Hardt, R., Lin, F.H., Wang, C.Y.: Singularities of p-energy minimizing maps. Commun. Pure Appl. Math. 50, 399–447 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hélein, F.: Regularite des applications faiblement harmoniques entre une surface et variete riemannienne. CRAS Paris 312, 591–596 (1991)

    MATH  Google Scholar 

  14. Hong, M.C., Wang, C.Y.: On the singular set of stable-stationary harmonic maps. Calc. Var. Partial Differ. Equ. 9, 141–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y. M., Wang, C.Y.: Regularity of weak solution of variational problem modeling the cosserat micropolar elasticity. Int. Math. Res. Not. IMRN. https://doi.org/10.1093/imrn/rnaa202

  16. Lin, F.H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. 149, 785–829 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, F.H., Wang, C.Y.: Stable Stationary Harmonic Maps to Spheres. Acta Math. Sin. (Engl. Ser.) 22, 319–330 (2006)

  18. Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37, 349–367 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1986)

    MATH  Google Scholar 

  20. Naber, A., Valtorta, D.: Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. Math. 2(185), 131–227 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Naber, A., Valtorta, D., Veronelli, G.: Quantitative regularity for p-harmonic maps. Commun. Anal. Geom. 27, 111–159 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neff, P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb. Sect. A 136, 997–1012 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17, 307–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoen, R., Uhlenbeck, K.: Regularity of minimizing harmonic maps into the sphere. Invent. Math. 78, 89–100 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18, 253–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toro, T., Wang, C.Y.: Compactness properties of weakly \(p\)-harmonic maps into homogeneous spaces. Indiana Univ. Math. J. 44, 87–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, C.Y.: Boundary partial regularity for a class of harmonic maps. Commun. Partial Differ. Equ. 24, 355–368 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xin, Y.L., Yang, Y.H.: Regularity of \(p\)-harmonic maps into certain manifolds with positive sectional curvature. J. Reine Angew. Math. 466, 1–17 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y.M. Li is supported by the Fundamental Research Funds for the Central Universities (No. 2021RC220) and the China Postdoctoral Science Foundation (Grant No. 2020M680324). The corresponding author L.S. Wang is financially supported by the National Natural Science Foundation of China (No. 11901531) and China Scholarship Council (No. 202008330417).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, L. Boundary regularity of stationary critical points for a Cosserat energy functional. Nonlinear Differ. Equ. Appl. 30, 21 (2023). https://doi.org/10.1007/s00030-022-00834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00834-8

Keywords

Mathematics Subject Classification

Navigation