Skip to main content
Log in

A dynamic programming approach for controlled fractional SIS models

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We investigate a susceptible-infected-susceptible (SIS) epidemic model based on the Caputo–Fabrizio operator. After performing an asymptotic analysis of the system, we study a related finite horizon optimal control problem with state constraints. We prove that the corresponding value function satisfies in the viscosity sense a dynamic programming equation. We then turn to the asymptotic behavior of the value function, proving its convergence to the solution of a stationary problem, as the planning horizon tends to infinity. Finally, we present some numerical simulations providing a qualitative description of the optimal dynamics and the value functions involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bardi, M., Da Lio, F.: On the bellman equation for some unbounded control problems. Nonlinear Differ. Equ. Appl. 4(4), 491–510 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balzotti, C., D’Ovidio, M., Lai, A.C., Loreti, P.: Effects of fractional derivatives with different orders in sis epidemic models. Computation 9, 89 (2021)

    Article  Google Scholar 

  3. Behncke, H.: Optimal control of deterministic epidemics. Optimal Control Appl. Methods 21(6), 269–285 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capuzzo-Dolcetta, I., Lions, P.-L.: Hamilton-jacobi equations with state constraints. Trans. Am. Math. Soc. 318(2), 643–683 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl 1(2), 1–13 (2015)

    Google Scholar 

  6. Chen, Y., Liu, F., Qiang, Yu., Li, T.: Review of fractional epidemic models. Appl. Math. Model. 97, 281–307 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capasso, V., Serio, G.: A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42(1–2), 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton–Jacobi equations. SIAM (2013)

  9. Fujita, Y., Ishii, H., Loreti, P.: Asymptotic solutions of Hamilton–Jacobi equations in Euclidean n space. Indiana Univ. Math. J. 55(5), 1671–1700 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998)

    Article  MATH  Google Scholar 

  11. Kumar, D., Singh, J., Al Qurashi, M., Baleanu, D.: A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Adv. Differ. Equ. 2019(1), 278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, P.-L.: Generalized solutions of Hamilton–Jacobi equations, vol. 69. Pitman, London (1982)

    MATH  Google Scholar 

  13. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 87–92 (2015)

    Google Scholar 

  14. Loreti, P.: Some properties of constrained viscosity solutions of Hamilton–Jacobi–Bellman equations. SIAM J. Control. Optim. 25(5), 1244–1252 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, T., Wang, Y., Liu, F., Turner, I.: Novel parameter estimation techniques for a multi-term fractional dynamical epidemic model of dengue fever. Numer. Algorithms 82(4), 1467–1495 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Piccoli, B.: Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Math. Control Relat. Fields 2(4), 383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  18. Soner, H.M.: Optimal control with state-space constraint i. SIAM J. Control. Optim. 24(3), 552–561 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Y., Yong, J.: A deterministic affine-quadratic optimal control problem. ESAIM Control Optim. Calc. Var. 20(3), 633–661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, X., Liu, X.: Backward bifurcation of an epidemic model with saturated treatment function. J. Math. Anal. Appl. 348(1), 433–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou, T., Zhang, W., Qiuying, L.: Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function. Appl. Math. Comput. 226, 288–305 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Cacace.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacace, S., Lai, A.C. & Loreti, P. A dynamic programming approach for controlled fractional SIS models. Nonlinear Differ. Equ. Appl. 30, 20 (2023). https://doi.org/10.1007/s00030-022-00832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00832-w

Keywords

Mathematics Subject Classification

Navigation