Skip to main content
Log in

Regularity of the value function and quantitative propagation of chaos for mean field control problems

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We investigate a mean field optimal control problem obtained in the limit of the optimal control of large particle systems with forcing and terminal data which are not assumed to be convex. We prove that the value function, which is known to be Lipschitz continuous but not of class \(C^1\), in general, without convexity, is actually smooth in an open and dense subset of the space of times and probability measures. As a consequence, we prove a new quantitative propagation of chaos-type result for the optimal solutions of the particle system starting from this open and dense set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baryaktar, E., Chakraborty, P.: Mean field control and finite agent approximation for regime-switching jump diffusions. arXiv preprint. arXiv: 2109.09134

  2. Briani, A., Cardaliaguet, P.: Stable solutions in potential mean field game systems. Nonlinear Differ. Equ. Appl. 25(1), 1–26 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control (Vol. 58). Springer, Berlin (2004)

  4. Cannarsa, P., Tessitore, M.E.: Optimality conditions for boundary control problems of parabolic type. In: Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena (pp. 79–96). Birkhäuser, Basel (1994)

  5. Cardaliaguet, P., Cirant, M., Porretta, A.: Splitting methods and short time existence for the master equations in mean field games, To appear in JEMS (2020)

  6. Cardaliaguet, P., Delarue, F., Lasry, J. M., Lions, P.-L.: The Master Equation and the Convergence Problem in Mean Field Games (AMS-201) (Vol. 381). Princeton University Press, Princeton (2019)

  7. Cardaliaguet, P., Daudin S., Jackson J., Souganidis P.: An algebraic convergence rate for the optimal control of McKean–Vlasov dynamics. arXiv preprint. arXiv:2203.14554

  8. Carmona, R., Delarue, F.: Forward-backward stochastic differential equations and controlled McKean–Vlasov dynamics. Ann. Probab. 43(5), 2647–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications I–II. Springer, Berlin (2018)

  10. Cavagnari, G., Lisini, S., Orrieri, C., Savaré, G.: Lagrangian, Eulerian and Kantorovich formulations of multi-agent optimal control problems: equivalence and Gamma-convergence. arXiv preprint arXiv:2011.07117 (2020)

  11. Cecchin, A., Delarue, F.: Weak solutions to the master equation of potential mean field games. arXiv preprint arXiv:2204.04315 (2022)

  12. Cecchin, A.: Finite state N-agent and mean field control problems. ESAIM: Control Optim. Calculus Var. 27, 31 (2021)

  13. Cosso, A., Gozzi, F., Kharroubi, I., Pham, H., Rosestolato, M.: Master Bellman equation in the Wasserstein space: uniqueness of viscosity solutions. arXiv preprint arXiv:2107.10535 (2021)

  14. Daudin, S.: Optimal control of the Fokker–Planck equation under state constraints in the Wasserstein space. arXiv preprint. arXiv: 2109.14978

  15. Delarue, F., Lacker, D., Ramanan, K.: From the master equation to mean field game limit theory: large deviations and concentration of measure. Ann. Probab. 48(1), 211–263 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Djete, M.F.: Large population games with interactions through controls and common noise: convergence results and equivalence between \( open \)\( loop \) and \( closed \)\( loop \) controls. arXiv preprint arXiv:2108.02992 (2021)

  17. Djete, M.F.: Extended mean field control problem: a propagation of chaos result. Electron. J. Probab. 27, 1–53 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Djete, F. M., Possamaï, D., Tan, X.: McKean–Vlasov optimal control: limit theory and equivalence between different formulations. arXiv preprint arXiv:2001.00925 (2020)

  19. Fornasier, M., Lisini, S., Orrieri, C., Savaré, G.: Mean-field optimal control as gamma-limit of finite agent controls. Eur. J. Appl. Math. 30(6), 1153–1186 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gangbo, W., Mayorga, S., Swiech, A.: Finite dimensional approximations of Hamilton–Jacobi–Bellman equations in spaces of probability measures. SIAM J. Math. Anal. 53(2), 1320–1356 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Germain, M., Pham, H., Warin, X.: Rate of convergence for particle approximation of PDEs in the Wasserstein space. arXiv preprint. arXiv: 2103.00837

  22. Horowitz, J., Karandikar, R.L.: Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55(3), 261–273 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolokoltsov, V.N.: Nonlinear Markov games on a finite state space (mean-field and binary interactions). Int. J. Stat. Probab. 1(1), 77–91 (2012)

    Article  Google Scholar 

  24. Lacker, D.: Limit theory for controlled McKean–Vlasov dynamics. SIAM J. Control. Optim. 55(3), 1641–1672 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, RI (1967)

  26. Lauriere, M., Tangpi, L.: Convergence of large population games to mean field games with interaction through the controls. SIAM J. Math. Anal. 54(3), 3535–3574 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions, J.L., Malgrange, B.: Sur l’unicité rétrograde dans les problèmes mixtes paraboliques. Math. Scand. 8(2), 277–286 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

  29. Lasry, J.M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Cardaliaguet was partially supported by the Air Force Office for Scientific Research grant FA9550-18-1-0494 and IMSI, the Institute for Mathematical and Statistical Innovation. Souganidis was partially supported by the National Science Foundation grant DMS-1900599, the Office for Naval Research grant N000141712095 and the Air Force Office for Scientific Research grant FA9550-18-1-0494. Both authors would like to thank the IMSI for its hospitality during the Fall 2021 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cardaliaguet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The proof of Lemma 1.6

Appendix A: The proof of Lemma 1.6

Proof

A fact similar to Lemma 1.6 was given in [2] for the torus and for smooth initial data. Here, we extend the argument for the whole space and general initial conditions and slightly simplify it.

We begin with the existence of a solution to (1.14), the uniqueness being obvious in view of the regularity of \(\alpha \).

Fix \(\beta \in C^\infty _c((t_0,T]\times {\mathbb {R}}^d; {\mathbb {R}}^d)\) and note that the product \(m\beta \) is smooth, because the only singularity of m is at time \(t_0\). Thus, there exists a unique classical solution to (1.14).

In order to prove its regularity, fix \(t_0<t_1<t_2\), \(\xi \in C^{2+\delta }({\mathbb {R}}^d)\), let w be the solution to

$$\begin{aligned} -\partial _t w-\Delta w-\alpha (t,x)\cdot Dw=0\ \ \textrm{in}\ \ (t_0,T)\times {\mathbb {R}}^d \ \ \ w(t_2)=\xi \ \ \textrm{in}\ \ {\mathbb {R}}^d, \end{aligned}$$

and note that, for a constant C depending only on the data of the problem, since the regularity of \(\alpha \) depends only on the data of the problem,

$$\begin{aligned} \Vert w\Vert _\infty +\Vert Dw\Vert _{\infty }\le C \Vert \xi \Vert _{W^{1,\infty }} \ \ \textrm{and}\ \ \Vert w\Vert _{C^{\delta /2,\delta }}+ \Vert Dw\Vert _{C^{\delta /2,\delta }}\le C\Vert \xi \Vert _{C^{2+\delta }}.\nonumber \\ \end{aligned}$$
(A.1)

Then,

$$\begin{aligned} \int _{{\mathbb {R}}^d} \rho (t_2,x)\xi (x)dx = \int _{{\mathbb {R}}^d} w(t_1,x)\rho (t_1,x)dx- \int _{t_1}^{t_2}\int _{{\mathbb {R}}^d}\beta (t,x)\cdot Dw(t,x) m(t,dx)dx, \end{aligned}$$

and, choosing \(t_1=t_0\) and \(t_2\) arbitrary in \([t_0,T]\), we get

$$\begin{aligned} \sup _{t\in [t_0,T]} \Vert \rho (t)\Vert _{(W^{1,\infty })'} \le \Vert \beta (t,\cdot )\Vert _{L^1_m([0,T]\times {\mathbb {R}}^d)}. \end{aligned}$$
(A.2)

In addition, since, thanks to (A.1),

$$\begin{aligned} \Vert w(t_1,\cdot )-w(t_2,\cdot )\Vert _{W^{1,\infty }}\le C(t_2-t_1)^{\delta /2}\Vert \xi \Vert _{C^{2+\delta }} \end{aligned}$$

using (A.2) we find

$$\begin{aligned}&\int _{{\mathbb {R}}^d} (\rho (t_2,x)-\rho (t_1,x))\xi (x)dx\\&\quad = \int _{{\mathbb {R}}^d} (w(t_1,x)-w(t_2,x))\rho (t_1,x)dx\\&\qquad - \int _{t_1}^{t_2}\int _{{\mathbb {R}}^d}\beta (t,x)\cdot Dw(t,x) m(t,dx)dx\\&\quad \le \Vert w(t_1,\cdot )-w(t_2,\cdot )\Vert _{W^{1,\infty }}\Vert \rho (t_1,\cdot )\Vert _{(W^{1,\infty })'}\\&\qquad +C(t_2-t_1)^{1/2}\Vert \beta \Vert _{L^2_m([0,T]\times {\mathbb {R}}^d)}\Vert Dw\Vert _\infty \\&\quad \le C(t_2-t_1)^{\delta /2}\Vert \beta (t,\cdot )\Vert _{L^1_m([0,T]\times {\mathbb {R}}^d)} \ \Vert \xi \Vert _{C^{2+\delta }}\\&\qquad +C(t_2-t_1)^{1/2}\Vert \beta \Vert _{L^2_m([0,T]\times {\mathbb {R}}^d)}\Vert \xi \Vert _{W^{1,\infty }}. \end{aligned}$$

The last estimates proves the existence of a solution \(\rho \) for \(\beta \in C^0([t_0,T]\times {\mathbb {R}}^d; {\mathbb {R}}^d)\) or for \(\beta \in L^\infty \) vanishing near \(t=t_0\) by approximation.

Next, let

$$\begin{aligned} J(m',\alpha ') = \int _{t_0}^T \left( \int _{{\mathbb {R}}^d} L(x, \alpha '(t,x))m'(t,dx)+{\mathcal {F}}(m'(t))\right) dt +{\mathcal {G}}(m'(T)). \end{aligned}$$

The quantity \(J(m',\alpha ') \) is defined, for instance, for \(m'\in C^0([t_0,T], {\mathcal {P}}_1({\mathbb {R}}^d))\) and \(\alpha '\in C^0([t_0,T]\times {\mathbb {R}}^d; {\mathbb {R}}^d)\). Let \(\beta \in C^\infty _c((t_0,T]\times {\mathbb {R}}^d)\) and \(\rho \) be the classical solution to (1.14), and, for \(h>0\) small, let \(m_h\in C^0([t_0,T],{\mathcal {P}}_1({\mathbb {R}}^d))\) be the solution to

$$\begin{aligned} \partial _t m_h -\Delta m_h +\textrm{div}(m_h (\alpha +h\beta ))=0\qquad \textrm{in}\; (t_0,T)\times {\mathbb {R}}^d \ \ \text {and} \ \ m_h(t_0)= m_0 \ \ \textrm{in}\ \ {\mathbb {R}}^d. \end{aligned}$$

Then \(m_h=m+h\rho +h^2\xi _h\), where \(\xi _h\) solves in the sense of distribution

$$\begin{aligned} \partial _t \xi _h -\Delta \xi _h +\textrm{div} (\xi _h (\alpha +h\beta )) +\textrm{div}(\beta \rho )= 0\ \ \textrm{in}\ \ (t_0,T)\times {\mathbb {R}}^d \ \ \text {and}\ \ \xi _h(t_0)= 0\ \ \textrm{in}\ \ {\mathbb {R}}^d. \end{aligned}$$

The regularity of \(\alpha \), \(\beta \) and \(\rho \) imply that \(\Vert \xi _h\Vert _\infty \le C\), with C depending on \(\beta \), and, as \(h\rightarrow 0\), the \((\xi _h)\)s converges weakly in \(L^\infty \)-weak-\(*\) to the solution \(\xi \) of the same equation with \(h=0\).

Then

$$\begin{aligned}&J(m_h,\alpha +h\beta ) =\int _{t_0}^T\left( \int _{{\mathbb {R}}^d} L(x,\alpha +h\beta )m_h(t,dx)+{\mathcal {F}}(m_h(t))\right) dt + {\mathcal {G}}(m_h(T)) \\&\quad = J(m,\alpha ) + h\Bigl \{ \int _{t_0}^T\Bigl (\int _{{\mathbb {R}}^d} D_\alpha L(x,\alpha )\cdot \beta (t,x) m(t,dx)+\int _{{\mathbb {R}}^d} L(x,\alpha )\rho (t,x)dx\\&\qquad +\frac{\delta {\mathcal {F}}}{\delta m}(m(t))(\rho (t))\Bigr )dt + \frac{\delta {\mathcal {G}}}{\delta m}(m(T))(\rho (T)) \Bigr \} \\&\qquad + \frac{h^2}{2} \Bigl \{ \int _{t_0}^T\Bigl (\int _{{\mathbb {R}}^d} D_{\alpha \alpha } L(x,\alpha )\beta (t,x)\cdot \beta (t,x) m(t,dx)\\&\qquad +2\int _{{\mathbb {R}}^d} D_\alpha L(x,\alpha )\cdot \beta (t,x) \rho (t,x)dx\\&\qquad +\int _{{\mathbb {R}}^d} 2 L(x,\alpha )\xi _h(t,x)dx+2\frac{\delta {\mathcal {F}}}{\delta m}(m(t))(\xi _h(t))+ \frac{\delta ^2 {\mathcal {F}}^2}{\delta m}(m(t))(\rho (t),\rho (t))\Bigr )dt \\&\qquad + 2\frac{\delta {\mathcal {G}}}{\delta m}(m(T))(\xi _h(T))+ \frac{\delta ^2 {\mathcal {G}}}{\delta m^2}(m(T))(\rho (T),\rho (T)) \Bigr \} + o(h^2). \end{aligned}$$

The first-order necessary optimality condition implies that the factor of h above vanishes and, therefore, the limit as h vanishes of the term in \(h^2\) is nonnegative.

Thus

$$\begin{aligned}&\int _{t_0}^T\Bigl (\int _{{\mathbb {R}}^d} D_{\alpha \alpha } L(x,\alpha )\beta (t,x)\cdot \beta (t,x) m(t,dx)+2\int _{{\mathbb {R}}^d} D_\alpha L(x,\alpha )\cdot \beta (t,x) \rho (t,x)dx\\&\quad +\int _{{\mathbb {R}}^d} 2 L(x,\alpha )\xi (t,x)dx+2\frac{\delta {\mathcal {F}}}{\delta m}(m(t))(\xi (t))+ \frac{\delta ^2 {\mathcal {F}}^2}{\delta m}(m(t))(\rho (t),\rho (t))\Bigr )dt \\&\quad + 2\frac{\delta {\mathcal {G}}}{\delta m}(m(T))(\xi (T))+ \frac{\delta ^2 {\mathcal {G}}}{\delta m^2}(m(T))(\rho (T),\rho (T)) \; \ge \; 0. \end{aligned}$$

Using the equation satisfied by the multiplier u and the equation satisfied by \(\xi \) we find

$$\begin{aligned}&\int _{t_0}^T \int _{{\mathbb {R}}^d} (L(x,\alpha )\xi (t,x)dx+\frac{\delta {\mathcal {F}}}{\delta m}(m(t))(\xi (t)))dt+ \frac{\delta {\mathcal {G}}}{\delta m}(m(T))(\xi (T))\\&\quad = \int _{t_0}^T \int _{{\mathbb {R}}^d} ((-H(x,Du)-\alpha \cdot Du)\xi (t,x)dx\\&\qquad +\frac{\delta {\mathcal {F}}}{\delta m}(m(t))(\xi (t)))dt+ \frac{\delta {\mathcal {G}}}{\delta m}(m(T))(\xi (T)) \\&\quad = -\int _{t_0}^T\int _{{\mathbb {R}}^d} Du(t,x)\cdot \beta (t,x) \rho (t,x) dxdt\\&\quad = - \int _{t_0}^T\int _{{\mathbb {R}}^d} D_\alpha L(x,\alpha )\cdot \beta (t,x) \rho (t,x)dxdt. \end{aligned}$$

Inserting the last equality in the previous inequality yields the second-order optimality condition when \(\beta \) is smooth. The general case is obtained by approximation using the estimates in the first part of the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardaliaguet, P., Souganidis, P.E. Regularity of the value function and quantitative propagation of chaos for mean field control problems. Nonlinear Differ. Equ. Appl. 30, 25 (2023). https://doi.org/10.1007/s00030-022-00823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00823-x

Mathematics Subject Classification

Navigation