Skip to main content
Log in

Harnack inequalities with power \(\pmb {p\in (1,+\infty )}\) for transition semigroups in Hilbert spaces

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We consider the stochastic differential equation

$$\begin{aligned} \left\{ \begin{array}{ll} dX(t)=[AX(t)+F(X(t))]dt+C^{1/2}dW(t), &{} t>0,\\ X(0)=x \in {\mathcal {X}}, \end{array}\right. \end{aligned}$$

where \({\mathcal {X}}\) is a separable Hilbert space, \(\{W(t)\}_{t\ge 0}\) is a \({\mathcal {X}}\)-cylindrical Wiener process, A and C are suitable operators on \({\mathcal {X}}\) and \(F:{{\text {Dom}}}(F)\subseteq {\mathcal {X}}\rightarrow {\mathcal {X}}\) is a smooth enough function. We establish a Harnack inequality with power \(p \in (1,+\infty )\) for the transition semigroup \(\{P(t)\}_{t\ge 0}\) associated with the stochastic problem above, under less restrictive conditions than those considered in the literature. Some applications to these inequalities are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We say that a \({\mathcal {K}}\)-valued process \(\psi \) is progressively measurable if, as a transformation from \(\Omega \times [0,t]\) equipped with the \(\sigma \)-field \(\mathcal {F}_t \times \mathcal {B}([0,t])\) into \(({\mathcal {K}}, \mathcal {B}({\mathcal {K}}))\) is measurable for any \([0,t]\subseteq I\).

References

  1. Angiuli, L., Lorenzi, L.: On improvement of summability properties in nonautonomous Kolmogorov equations. Comm. Pure Appl. Anal. 13, 1237–1265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addona, D., Cappa, G., Ferrari, S.: Domains of elliptic operators on sets in Wiener space, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, 2050004 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Addona, D., Cappa, G., Ferrari, S.: On the domain of non-symmetric and, possibly, degenerate Ornstein–Uhlenbeck operators in separable Banach spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. vol. 33 (2022), no. 2, pp. 297–359

  4. Bignamini, D.A.: \(L^2\)-theory for transitions semigroups associated to dissipative systems. Stoch. Partial Differ. Equ. Anal. Comput. (2022). https://doi.org/10.1007/s40072-022-00253-x

    Article  Google Scholar 

  5. Bignamini, D.A., Ferrari, S.: Regularizing properties of (Non-Gaussian) transition semigroups in Hilbert spaces. Potential Anal. (2021). https://doi.org/10.1007/s11118-021-09931-2

    Article  Google Scholar 

  6. Bignamini, D.A., Ferrari, S.: On generators of transition semigroups associated to semilinear stochastic partial differential equations. J. Math. Anal. Appl. 508, 125878 (2022). https://doi.org/10.1016/j.jmaa.2021.125878

    Article  MathSciNet  MATH  Google Scholar 

  7. Cappa, G., Ferrari, S.: Maximal Sobolev regularity for solutions of elliptic equations in infinite dimensional Banach spaces endowed with a weighted Gaussian measure. J. Differ. Equs. 261, 7099–7131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cappa, G., Ferrari, S.: Maximal Sobolev regularity for solutions of elliptic equations in Banach spaces endowed with a weighted Gaussian measure: the convex subset case. J. Math. Anal. Appl. 458, 300–331 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cerrai, S.: Second order PDE’s in finite and infinite dimension. Lecture Notes in Mathematics, vol. 1762. Springer-Verlag, Berlin (2001)

  10. Cerrai, S., Lunardi, A.: Schauder theorems for Ornstein-Uhlenbeck equations in infinite dimension. J. Differ. Equs. 267, 7462–7482 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chae, S.B.: Holomorphy and Calculus in Normed Spaces, Chapman & Hall/CRC Pure and Applied Mathematics, vol. 92. Taylor & Francis Group, New York and Basel (1985)

    Google Scholar 

  12. Da Prato, G., Lunardi, A.: On the Dirichlet semigroup for Ornstein-Uhlenbeck operators in subsets of Hilbert spaces. J. Funct. Anal. 259(10), 2642–2672 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Da Prato, G., Röckner, M., Wang, F.-Y.: Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J. Funct. Anal. 257, 992–1017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  15. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 152, Second edition, Cambridge University Press, Cambridge, (2014)

  16. Deng, C.S., Zhang, S.Q.: Log-Harnack inequalities for Markov semigroups generated by non-local Gruschin type operators. Math. Nachr. 291, 1055–1074 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Mathematics, Springer-Verlag, London, (1999)

  18. Dunford, N., Schwartz, J.T.: Linear operators. John Wiley & Sons Inc, New York, Part I, Wiley Classics Library (1988)

  19. Dunford, N., Schwartz, J.T.: Linear operators. John Wiley & Sons Inc, New York, Part II, Wiley Classics Library (1988)

  20. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York (2000) ISBN: 0-387-98463-1

  21. Engel, K.-J., Nagel, R.: A short course on operator semigroups. Universitext, Springer, New York (2006)

  22. Es-Sarhir, A., von Renesse, M.-K., Scheutzow, M.: Harnack inequality for functional SDEs with bounded memory. Electron. Commun. Probab. 14, 560–565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldys, B., Kocan, M.: Diffusion semigroups in spaces of continuous functions with mixed topology. J. Differ. Equs. 173, 17–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gordina, M., Röckner, M., Wang, F.-Y.: Dimension-independent Harnack inequalities for subordinated semigroups. Potential Anal. 34, 293–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, X., Zhang, S.Q.: Mild solutions and Harnack inequality for functional stochastic partial differential equations with Dini drift. J. Theoret. Probab. 32, 303–329 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jacod, J., Protter, P.: Probability essentials. Universitext, Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  27. Kassmann, M.: Harnack inequalities: an introduction, Bound. Value Probl. (2007), Art. ID 81415, 21

  28. Lorenzi, L.: Analytical Methods for Kolmogorov equations, CRC Press, second ed., (2017)

  29. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel (1995)

    Book  MATH  Google Scholar 

  30. Lunardi, A., Röckner, M.: Schauder theorems for a class of (pseudo-)differential operators on finite- and infinite-dimensional state spaces. J. Lond. Math. Soc. 2(104), 492–540 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lv, W., Huang, X.: Harnack and shift Harnack inequalities for degenerate (functional) stochastic partial differential equations with singular drifts. J. Theoret. Probab. 34, 827–851 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mujica, J.: Complex Analysis in Banach Spaces, North-Holland Mathematics Studies, vol. 120. North-Holland, Amsterdam (1985)

    Google Scholar 

  33. Ouhabaz, E.M.: Analysis of heat equations on domains, London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton, NJ (2005)

    Google Scholar 

  34. Reed, M., Simon, B.: Methods of modern mathematical physics. Academic Press, New York-London, I. Functional analysis (1972)

  35. Röckner, M., Wang, F.-Y.: Harnack and functional inequalities for generalized Mehler semigroups. J. Funct. Anal. 203, 237–261 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Röckner, M., Wang, F.-Y.: Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequences, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, 27–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, F.-Y.: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields 109, 417–424 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, F.-Y.: Equivalence of dimension-free Harnack inequality and curvature condition. Integr. Equs. Oper. Theory 48, 547–552 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, F.-Y.: Harnack inequalities for stochastic partial differential equations. SpringerBriefs in Mathematics, Springer, New York (2013)

    Book  MATH  Google Scholar 

  40. Wang, F.-Y., Yuan, C.: Harnack inequalities for functional SDEs with multiplicative noise and applications. Stoch. Process. Appl. 121, 2692–2710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S.F. has been partially supported by the OK-INSAID project ARS01-00917. The authors are members of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (INdAM) and have been partially supported by the PRIN 2015 MIUR project 2015233N54. The authors are grateful to Alessandra Lunardi for many helpful conversations. We would like to thank the anonymous referee for their valuable comments and suggestions which allow us to improve the reading of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide A. Bignamini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angiuli, L., Bignamini, D.A. & Ferrari, S. Harnack inequalities with power \(\pmb {p\in (1,+\infty )}\) for transition semigroups in Hilbert spaces. Nonlinear Differ. Equ. Appl. 30, 6 (2023). https://doi.org/10.1007/s00030-022-00812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00812-0

Keywords

Mathematics Subject Classification

Navigation