Skip to main content
Log in

\(L^2\)-theory for transition semigroups associated to dissipative systems

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

Let \({{\mathcal {X}}}\) be a real separable Hilbert space. Let C be a linear, bounded, non-negative self-adjoint operator on \({{\mathcal {X}}}\) and let A be the infinitesimal generator of a strongly continuous semigroup in \({{\mathcal {X}}}\). Let \(\{W(t)\}_{t\ge 0}\) be a \({{\mathcal {X}}}\)-valued cylindrical Wiener process on a filtered (normal) probability space \((\Omega ,{\mathcal {F}},\{{\mathcal {F}}_t\}_{t\ge 0},{\mathbb {P}})\). Let \(F:{{\text {Dom}}}(F)\subseteq {{\mathcal {X}}}\rightarrow {{\mathcal {X}}}\) be a smooth enough function. We are interested in the generalized mild solution \({\lbrace X(t,x)\rbrace _{t\ge 0}}\) of the semilinear stochastic partial differential equation

$$\begin{aligned} {\left\{ \begin{array}{ll} dX(t,x)=\big (AX(t,x)+F(X(t,x))\big )dt+ \sqrt{C}dW(t), &{} t>0;\\ X(0,x)=x\in {{\mathcal {X}}}. \end{array}\right. } \end{aligned}$$

We consider the transition semigroup defined by

$$\begin{aligned} P(t)\varphi (x):={{\mathbb {E}}}[\varphi (X(t,x))], \qquad \varphi \in B_b({{\mathcal {X}}}),\ t\ge 0,\ x\in {{\mathcal {X}}}. \end{aligned}$$

If \({{\mathcal {O}}}\) is an open set of \({{\mathcal {X}}}\), we consider the Dirichlet semigroup defined by

$$\begin{aligned} P^{{\mathcal {O}}}(t)\varphi (x):={\mathbb {E}}\left[ \varphi (X(t,x)){\mathbb {I}}_{\{\omega \in \Omega \; :\;\tau _x(\omega )> t\}}\right] ,\quad \varphi \in B_b({\mathcal {O}}),\; x\in {{\mathcal {O}}},\; t>0 \end{aligned}$$

where \(\tau _x\) is the exit time defined by

$$\begin{aligned} \tau _x=\inf \{ s> 0\; : \; X(s,x)\in {{\mathcal {O}}}^c \}. \end{aligned}$$

We study the infinitesimal generator of P(t), \(P^{{\mathcal {O}}}(t)\) in \(L^2({{\mathcal {X}}},\nu )\), \(L^2({{\mathcal {O}}},\nu )\) respectively, where \(\nu \) is the unique invariant measure of P(t).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Addona, D., Bandini, E., Masiero, F.: A nonlinear Bismut–Elworthy formula for HJB equations with quadratic Hamiltonian in Banach spaces. NODEA-Nonlinear Differ. Equ. Appl. 27 (2020)

  2. Addona, D., Cappa, G., Ferrari, S. On the domain of elliptic operators defined in subsets of Wiener spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23 (2020)

  3. Angiuli, L., Ferrari, S., Pallara, D.: Gradient estimates for perturbed Ornstein–Uhlenbeck semigroups on infinite-dimensional convex domains. J. Evol. Equ. 19, 677–715 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Assaad, J., van Neerven, J.: \(L^2\)-theory for non-symmetric Ornstein–Uhlenbeck semigroups on domains. J. Evol. Equ. 13, 107–134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bignamini, D.A., Ferrari, S.: Regularizing properties of (Non-Gaussian) transition semigroups in Hilbert spaces. Potential Anal. (2021). https://doi.org/10.1007/s11118-021-09931-2

  6. Bignamini, D.A., Ferrari, S.: On generators of transition semigroups associated to semilinear stochastic partial differential equations. J. Math. Anal. Appl. 508(1), 125878 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogachev, V.I.: Gaussian Measures, Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence, RI (1998)

    Book  Google Scholar 

  8. Bogachev, V.I.: Measures on topological spaces. J. Math. Sci. 91, 3033–3156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cappa, G., Ferrari, S.: Maximal Sobolev regularity for solutions of elliptic equations in infinite dimensional Banach spaces endowed with a weighted Gaussian measure. J. Differ. Equ. 261, 7099–7131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cappa, G., Ferrari, S.: Maximal Sobolev regularity for solutions of elliptic equations in Banach spaces endowed with a weighted Gaussian measure: the convex subset case. J. Math. Anal. Appl. 458, 300–331 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Celada, P., Lunardi, A.: Traces of Sobolev functions on regular surfaces in infinite dimensions. J. Function. Anal. 266 (2013)

  12. Cerrai, S.: A Hille–Yosida theorem for weakly continuous semigroups. Semigroup Forum 49, 349–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cerrai, S.: Weakly continuous semigroups in the space of functions with polynomial growth. Dynam. Syst. Appl. 4, 351–371 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Cerrai, S.: Second order PDE’s in finite and infinite dimension. Lecture Notes in Mathematics, vol. 1762. Springer-Verlag, Berlin (2001)

  15. Cerrai, S.: Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Relat. Fields 125, 271–304 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cerrai, S.: Averaging principle for systems of reaction–diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. Dynam. Syst. Appl. 43, 2482–2518 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Cerrai, S., Da Prato, G.: A basic identity for Kolmogorov operators in the space of continuous functions related to RDEs with multiplicative noise. Ann. Probab. 42, 1297–1336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cerrai, S., Lunardi, A.: Averaging principle for nonautonomous slow-fast systems of stochastic reaction-diffusion equations: the almost periodic case. SIAM J. Math. Anal. 49, 2843–2884 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chae, S.B.: Holomorphy and Calculus in Normed Spaces, Chapman & Hall/CRC Pure and Applied Mathematics, vol. 92. Taylor & Francis Group, New York and Basel (1985)

    Google Scholar 

  20. Da Prato, G.: Bounded perturbations of Ornstein–Uhlenbeck semigroups. In “Evolution equations, semigroups and functional analysis (Milano, 2000)”, Progr. Nonlinear Differential Equations Appl., vol. 50, pp. 97–114 (2002). Birkhäuser, Basel

  21. Da Prato, G.: Monotone gradient systems in \(L^2\) spaces in “Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999)”, Progr. Probab., vol. 52, pp. 73–88 (2002), Birkhäuser, Basel

  22. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel (2004)

  23. Da Prato, G.: Transition semigroups corresponding to Lipschitz dissipative systems. Discrete Contin. Dyn. Syst. 10(1–2), 177–192 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Da Prato, G., Debussche, A., Goldys, B.: Invariant measures of non symmetric dissipative stochastic systems. Probab. Th. Relat. Fields 123, 355–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Da Prato, G., Lunardi, A.: On the Dirichlet semigroup for Ornstein–Uhlenbeck operators in subsets of Hilbert spaces. J. Funct. Anal. 259, 2642–2672 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Da Prato, G., Lunardi, A.: Sobolev regularity for a class of second order elliptic PDEs in infinite dimension. Ann. Prob. 47, 2113–2160 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Da Prato, G., Lunardi, A.: Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains. Ann. Inst. Henri Poincaré Probab. Stat. 51, 1102–1123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Da Prato, G., Lunardi, A., Tubaro, L.: Malliavin Calculus for non Gaussian differentiable measures and surface measures in Hilbert spaces. Trans. Am. Math. Soc. 370, 2113–2160 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Da Prato, G., Rockner, M.: Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields 124, 261–303 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Da Prato, G., Rockner, M., Wang, F.-Y.: Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J. Funct. Anal. 257, 992–1017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Da Prato, G., Tubaro, L.: Self-adjointness of some infinite-dimensional elliptic operators and application to stochastic quantization. Probab. Theory Relat. Fields 118, 131–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Da Prato, G., Tubaro, L.: Some results about dissipativity of Kolmogorov operators. Czechoslov. Math. J. 51, 685–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  34. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society Lecture Note Series, vol. 293. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  35. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 152. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  36. Demuth, M., Van Casteren, J.: Stochastic spectral theory for selfadjoint Feller operators: a functional integration approach, Birkhauser (2000)

  37. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics, Springer-Verlag, London (1999)

  38. Dynkin, E.B.: Markov Processes, vol. 1. Springer-Verlag, New York (1965)

    Book  MATH  Google Scholar 

  39. Dunford, N., Schwartz, J.T.: Linear Pperators. Wiley, Part II, Wiley Classics Library, New York (1988)

  40. Engel, K.-J., Nagel, R.: A Short Course on Operator Semigroups. Universitext, Springer, New York (2006)

    MATH  Google Scholar 

  41. Es-Sarhir, A., Stannat, W.: Maximal dissipativity of Kolmogorov operators with Cahn–Hilliard type drift term. J. Differ. Equ. 247, 424–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ferrari, S.: Sobolev spaces with respect to a weighted Gaussian measure in infinite dimensions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (2019)

  43. Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: \(L^p\) spaces. Springer monographs in Mathematics, Springer, New York (2007)

  44. Goldys, B., Kocan, M.: Diffusion semigroups in spaces of continuous functions with mixed topology. J. Differ. Equ. 173, 17–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kechris, A.S.: Classical Descriptive Set Theory, Graduate Texts in Mathematics 156. Springer, New York (2012)

    Google Scholar 

  46. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics,. Birkhäuser/Springer Basel AG, Basel (1995)

    Book  Google Scholar 

  47. Masiero, F.: Stochastic optimal control problems and parabolic equations in Banach spaces. SIAM J. Control Optim. 47(1), 251–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mujica, J.: Complex Analysis in Banach Spaces, North-Holland Mathematics Studies, vol. 120. North-Holland, Amsterdam (1985)

    Google Scholar 

  49. Peszat, S., Zabczyk, J.: Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23, 157–172 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364. Springer-Verlag, Berlin, Heidelberg (1993)

  51. Priola, E.: Dirichlet problems in a half-space of a Hilbert space. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2), 257–291 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York-London (1972)

    MATH  Google Scholar 

  53. Talarczyk, A.: Dirichlet problem for parabolic equations on Hilbert spaces. Studia Math. 141, 109–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank A. Lunardi and S. Ferrari for many useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bignamini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bignamini, D.A. \(L^2\)-theory for transition semigroups associated to dissipative systems. Stoch PDE: Anal Comp 11, 988–1043 (2023). https://doi.org/10.1007/s40072-022-00253-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-022-00253-x

Keywords

Mathematics Subject Classification

Navigation