Skip to main content
Log in

Multi-scale spike solutions for nonlinear coupled elliptic systems with critical frequency

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the following elliptic system

$$\begin{aligned} \left\{ \begin{array}{ll}-\varepsilon ^2\Delta u+P_1(x)u=\mu _1 u^3+\beta uv^2 &{}\text{ in } {\mathbb {R}}^3,\\ -\varepsilon ^2\Delta v+P_2(x)v=\mu _2 v^3+\beta u^2v &{}\text{ in } {\mathbb {R}}^3, \end{array}\right. \end{aligned}$$

with critical frequency in the sense that \(\inf _{x\in {\mathbb {R}}^N}P_i(x)=0(i=1,2)\). We show that if the coupling constant \(\beta \) is relatively large and the zero set of \(P_1(x)\) and \(P_2(x)\) admits several common isolated connected components, there exist synchronized positive vector solutions which are trapped in a neighborhood of the zero set of \(P_i(x)(i=1,2)\) and also the local maximum points of \(P_i(x)(i=1,2)\) for \(\varepsilon \) small. Moreover, the amplitudes of the solutions around the components of the zero set and local maximum points are of a different order of \(\varepsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82(2661), 1–4 (1999)

    MATH  Google Scholar 

  2. Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342, 453–458 (2006)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37, 345–361 (2010)

    Article  MathSciNet  Google Scholar 

  5. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrodinger systems. J. Partial Differ. Equ. 19, 200–207 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chow, K.: Periodic solutions for a system of four coupled nonlinear Schrödinger equations. Phys. Rev. Lett. A 285, 319–326 (2001)

    Article  Google Scholar 

  9. Cao, D., Noussair, E.S., Yan, S.: Multiscale-bump standing waves with a critical frequency for nonlinear Schrödinger equations. Trans. Am. Math. Soc. 7, 3813–3837 (2008)

    Article  Google Scholar 

  10. Chen, Z., Zou, W.: Standing waves for coupled nonlinear Schrödinger equations with decaying potentials. J. Math. Phys. 54, 111505 (2013)

    Article  MathSciNet  Google Scholar 

  11. Dancer, E.N., Wei, J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361, 1189–1208 (2009)

    Article  Google Scholar 

  12. Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 953–969 (2010)

    Article  MathSciNet  Google Scholar 

  13. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equation. Ann. I. H. Poincaré Anal. Non Linéaire 19, 261–280 (2002)

    Article  Google Scholar 

  14. Grossi, M.: A uniqueness result for for a semilinear elliptic equation in symmetric domains. Adv. Differ. Equ. 5, 193–212 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.. S.: Elliptic Partial Differential of Second Order. Grundlehren 224, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  16. Hioe, F., Salter, T.: Special set and solution of coupled nonlinear Schrödinger equations. J. Phys. A Math. Gen. 35, 8913–8928 (2002)

    Article  Google Scholar 

  17. Ikoma, N., Tanaka, K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 40, 449–480 (2011)

    Article  Google Scholar 

  18. Long, W., Peng, S.: Segregated vector solutions for a class of Bose–Einstein systems. J. Differ. Equ. 257, 207–230 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lucia, M., Tang, Z.: Multi-bump bound states for a Schrödinger system via Lyapunov–Schmidt Reduction. NoDEA Nonlinear Differ. Equ. Appl. 24, 24–65 (2017)

    Article  Google Scholar 

  20. Lucia, M., Tang, Z.: Multi-bump bound states for a system of nonlinear Schrödinger equations. J. Differ. Equ. 252, 3630–3657 (2012)

    Article  Google Scholar 

  21. Lin, T., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)

    Article  Google Scholar 

  22. Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10, 47–71 (2007)

    MATH  Google Scholar 

  23. Mitchell, M., Segev, M.: Self-trapping of inconherent white light. Nature 387, 880–883 (1997)

    Article  Google Scholar 

  24. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    Article  Google Scholar 

  25. Pomponio, A.: Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 227, 258–281 (2006)

    Article  MathSciNet  Google Scholar 

  26. Peng, S., Pi, H.: Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 36, 2205–2227 (2016)

    Article  MathSciNet  Google Scholar 

  27. Peng, S., Wang, Z.-Q.: Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch. Ration. Mech. Anal. 208, 305–339 (2013)

    Article  MathSciNet  Google Scholar 

  28. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^n\). Commun. Math. Phys. 271, 199–221 (2007)

    Article  Google Scholar 

  29. Timmermans, E.: Phase seperation of Bose Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998)

    Article  Google Scholar 

  30. Terracini, S., Verzini, G.: Multipulse phase in k-mixtures of Bose–Einstein condenstates. Arch. Ration. Mech. Anal. 194, 717–741 (2009)

    Article  MathSciNet  Google Scholar 

  31. Tang, Z., Wang, L.: Segregated vector solutions with multi-scale spikes for nonlinear coupled elliptic systems. J. Math. Anal. Appl. 464, 1–31 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wei, G.: Existence and concentration of ground states of coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 332(2), 846–862 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wang, J., Shi, J.: Standing waves of a weakly coupled Schrödinger system with distinct potential functions. J. Differ. Equ. 260, 1830–1864 (2016)

    Article  Google Scholar 

  34. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)

    Article  MathSciNet  Google Scholar 

  35. Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 11, 1003–1011 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafei Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by National Science Foundation of China (No. 11571040).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Xie, H. Multi-scale spike solutions for nonlinear coupled elliptic systems with critical frequency. Nonlinear Differ. Equ. Appl. 28, 25 (2021). https://doi.org/10.1007/s00030-021-00686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00686-8

Keywords

Mathematics Subject Classification

Navigation