Skip to main content
Log in

Multiplicative structures and random walks in o-minimal groups

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove structure theorems for o-minimal definable subsets \(S\subset G\) of definable groups containing large multiplicative structures, and show definable groups do not have bounded torsion arbitrarily close to the identity. As an application, for certain models of n-step random walks X in G we show upper bounds \(\mathbb {P}(X\in S)\le n^{-C}\) and a structure theorem for the steps of X when \(\mathbb {P}(X\in S)\ge n^{-C'}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The exponents on \(\rho \) and \(\rho _i\) here are slightly optimized from [7] with an essentially identical proof, see Remark 3.4.

  2. Technically, the scope of Theorem A is only for o-minimal expansions of \({\mathbb {R}}_{an,\exp }\), which does not contain all o-minimal expansions of \({\mathbb {R}}_{alg}\) as covered by Theorem 2.2. Theorem E, which does include o-minimal expansions of \({\mathbb {R}}_{alg}\), has the condition of avoiding a line segment in \((\mathbb {R}^d,+)\) replaced with the stronger condition of not containing unboundedly large arithmetic progressions, but fortunately, these latter conditions are in fact equivalent in \((\mathbb {R}^d,+)\) by the Uniform Finiteness Principle Fact 5.1 applied to the definable family of subsets \(\{S\cap \{y+tv:t\in \mathbb {R}\}\}_{y\in \mathbb {R}^d,v\in \mathbb {R}^d{\setminus } 0}\) of \(\mathbb {R}^d\).

References

  1. Breuillard, E., Green, B., Tao, T.: The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci. 116, 115–221 (2012)

    Article  MathSciNet  Google Scholar 

  2. Chernikov, A., Galvin, D., Starchenko, S.: Cutting lemma and Zarankiewicz’s problem in distal structures. Selecta Math. (N.S.), 26(2), Paper No. 25, 27 (2020)

  3. Conversano, A.: Groups definable in o-minimal structures: various properties and a diagram 12782, 2020 (2010)

    Google Scholar 

  4. Coste, M.: An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali Pisa (2000)

  5. Edmundo, M.J.: Solvable groups definable in o-minimal structures. J. Pure Appl. Algebra 185(1), 103–145 (2003)

    Article  MathSciNet  Google Scholar 

  6. Erdős, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898–902 (1945)

    Article  MathSciNet  Google Scholar 

  7. Fox, J., Kwan, M., Spink, H.: Geometric and o-minimal Littlewood-Offord problems. Ann. Probab. 2022+ (to appear)

  8. Frankl, P., Füredi, Z.: Solution of the Littlewood-Offord problem in high dimensions. Ann. Math. (2) 128(2), 259–270 (1988)

  9. Gleason, A.M.: Groups without small subgroups. Ann. Math. 2(56), 193–212 (1952)

    Article  MathSciNet  Google Scholar 

  10. Hrushovski, E.: Stable group theory and approximate subgroups. J. Am. Math. Soc. 25(1), 189–243 (2012)

    Article  MathSciNet  Google Scholar 

  11. Juškevičius, T., Šemetulskis, G.: Optimal Littlewood-Offord inequalities in groups. Combinatorica 39(4), 911–921 (2019)

    Article  MathSciNet  Google Scholar 

  12. Kane, D.M.: The correct exponent for the Gotsman-Linial conjecture. Comput. Complexity 23(2), 151–175 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kleitman, D.J.: On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors. Adv. Math. 5(155–157), 1970 (1970)

    MathSciNet  Google Scholar 

  14. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S., 12(54), 277–286 (1943)

  15. Miller, C.: Expansions of o-minimal structures on the real field by trajectories of linear vector fields. Proc. Am. Math. Soc. 139(1), 319–330 (2011)

    Article  MathSciNet  Google Scholar 

  16. Montgomery, D., Zippin, L.: Small subgroups of finite-dimensional groups. Ann. Math. 2(56), 213–241 (1952)

    Article  MathSciNet  Google Scholar 

  17. Nguyen, H., Van, V.: Optimal inverse Littlewood-Offord theorems. Adv. Math. 226(6), 5298–5319 (2011)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, H.H.: Anti-concentration of inhomogeneous random walks (2017). arXiv:1508.01393

  19. Otero, M.: A survey on groups definable in o-minimal structures, volume 2 of London Mathematical Society Lecture Note Series, pp. 177–206. Cambridge University Press (2008)

  20. Peterzil, Y., Pillay, A., Starchenko, S.: Definably simple groups in o-minimal structures. Trans. Am. Math. Soc. 352(10), 4397–4419 (2000)

    Article  MathSciNet  Google Scholar 

  21. Peterzil, Y., Starchenko, S.: Expansions of algebraically closed fields in o-minimal structures. Selecta Math. (N.S.), 7(3), 409–445 (2001)

  22. Peterzil, Y., Starchenko, S.: Expansions of algebraically closed fields. II. Functions of several variables. J. Math. Log. 3(1), 1–35 (2003)

  23. Peterzil, Y., Starchenko, S.: Uniform definability of the Weierstrass \(\wp \) functions and generalized tori of dimension one. Selecta Math. (N.S.) 10(4), 525–550 (2004)

  24. Pila, J., Wilkie, A.J.: The rational points of a definable set. Duke Math. J. 133(3), 591–616 (2006)

    Article  MathSciNet  Google Scholar 

  25. Pila, J.: On the algebraic points of a definable set. Selecta Math. (N.S.) 15(1), 151–170 (2009)

  26. Pila, J.: O-minimality and the André-Oort conjecture for \(\mathbb{C}^{n}\). Ann. Math. (2) 173(3), 1779–1840 (2011)

  27. Pila, J, Zannier, U: Rational points in periodic analytic sets and the Manin–Mumford conjecture. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19(2), 149–162 (2008)

  28. Pillay, A.: First order topological structures and theories. J. Symb. Logic 52(3), 763–778 (1987)

    Article  MathSciNet  Google Scholar 

  29. Pillay, A.: On groups and fields definable in \(o\)-minimal structures. J. Pure Appl. Algebra 53(3), 239–255 (1988)

    Article  MathSciNet  Google Scholar 

  30. Scanlon, T.: A Euclidean Skolem-Mahler-Lech-Chabauty method. Math. Res. Lett. 18(5), 833–842 (2011)

    Article  MathSciNet  Google Scholar 

  31. Strzebonski, A.W.: Euler characteristic in semialgebraic and other \({\rm o}\)-minimal groups. J. Pure Appl. Algebra 96(2), 173–201 (1994)

    Article  MathSciNet  Google Scholar 

  32. Tao, T., Vu, V.: From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. (N.S.) 46(3), 377–396 (2009)

  33. Tao, T., Vu, V.H.: Inverse Littlewood-Offord theorems and the condition number of random discrete matrices. Ann. Math. (2) 169(2), 595–632 (2009)

  34. Tarski, A.: A decision method for elementary algebra and geometry, 2nd edn. University of California Press, Berkeley and Los Angeles (1951)

    Book  Google Scholar 

  35. Tiep, P.H., Van, H.V.: Non-abelian Littlewood-Offord inequalities. Adv. Math. 302, 1233–1250 (2016)

    Article  MathSciNet  Google Scholar 

  36. van den Dries, L.: Tame Topology and o-minimal Structures. London Mathematical Society Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)

  37. van den Dries, L., Miller, C.: On the real exponential field with restricted analytic functions. Israel J. Math. 85(1–3), 19–56 (1994)

    Article  MathSciNet  Google Scholar 

  38. Yamabe, H.: On the conjecture of Iwasawa and Gleason. Ann. Math. 2(58), 48–54 (1953)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Artem Chernikov for helpful comments, Matthew Kwan for helpful remarks on the exposition, Isaac Goldbring for pointing out an example of a definable group not satisfying (NSS), and Thomas Scanlon for additional references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter Spink.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spink, H. Multiplicative structures and random walks in o-minimal groups. Sel. Math. New Ser. 30, 34 (2024). https://doi.org/10.1007/s00029-023-00911-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00911-5

Mathematics Subject Classification

Navigation