Skip to main content
Log in

Finite generation for Hochschild cohomology of Gorenstein monomial algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We show that a finite dimensional monomial algebra satisfies the finite generation conditions of Snashall–Solberg for Hochschild cohomology if and only if it is Gorenstein. This gives, in the case of monomial algebras, the converse to a theorem of Erdmann–Holloway–Snashall–Solberg–Taillefer. We also give a necessary and sufficient combinatorial criterion for finite generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This follows from binaturality of \({\text {Ext}}^*_{\Lambda ^e}(\Lambda , M)\) making it a right module over \({\text {Ext}}^*_{\Lambda ^e}(\Lambda , \Lambda )\); note that a priori this only makes the map \(- \smile \chi \) commute with the long exact sequence, but we use \(\chi \smile -\) for consistency with the theorem’s claim and use graded-commutativity.

References

  1. Anick, D.J.: On the homology of associative algebras. Trans. Am. Math. Soc. 296(2), 641–659 (1986)

    Article  MATH  Google Scholar 

  2. Anick, D.J., Green, E.L.: On the homology of quotients of path algebras. Commun. Algebra 15(1–2), 309–341 (1987)

    Article  MATH  Google Scholar 

  3. Bardzell, M.J.: The alternating syzygy behavior of monomial algebras. J. Algebra 188(1), 69–89 (1997)

    Article  MATH  Google Scholar 

  4. Benson, D., Iyengar, S.B., Krause, H., Pevtsova, J.: Local duality for the singularity category of a finite dimensional Gorenstein algebra. Nagoya Math. J. 244, 1–24 (2021)

    Article  MATH  Google Scholar 

  5. Bergh, P.A., Oppermann, S., Jorgensen, D.A.: The Gorenstein defect category. Q. J. Math. 66(2), 459–471 (2015)

    Article  MATH  Google Scholar 

  6. Bongartz, K.: Algebras and quadratic forms. J. Lond. Math. Soc. (2) 28(3), 461–469 (1983)

    Article  MATH  Google Scholar 

  7. Briggs, B., Gelinas, V.: The A-infinity Centre of the Yoneda Algebra and the Characteristic Action of Hochschild Cohomology on the Derived Category. arXiv e-prints, arXiv:1702.00721 (2017)

  8. Buchweitz, R.-O.: Maximal Cohen-Macaulay Modules and Tate-Cohomology Over Gorenstein Rings. Manuscript available via the URL https://tspace.library.utoronto.ca/handle/1807/16682 (1986)

  9. Butler, M.C.R., King, A.D.: Minimal resolutions of algebras. J. Algebra 212(1), 323–362 (1999). https://doi.org/10.1006/jabr.1998.7599

    Article  MATH  Google Scholar 

  10. Carlson, J.F.: The varieties and the cohomology ring of a module. J. Algebra 85(1), 104–143 (1983)

    Article  MATH  Google Scholar 

  11. Chen, X.-W., Shen, D., Zhou, G.: The Gorenstein-projective modules over a monomial algebra. Proc. R. Soc. Edinb. Sect. A 148(6), 1115–1134 (2018)

    Article  MATH  Google Scholar 

  12. Chuang, J., King, A.: Free resolutions of algebras. arXiv e-prints, arXiv:1210.5438 (2012)

  13. Cibils, C.: The syzygy quiver and the finitistic dimension. Commun. Algebra 21(11), 4167–4171 (1993)

    Article  MATH  Google Scholar 

  14. Conner, A., Goetz, P.: \(A_\infty \)-algebra structures associated to \(\cal{K} _2\) algebras. J. Algebra 337, 63–81 (2011)

    Article  MATH  Google Scholar 

  15. Erdmann, K., Holloway, M., Taillefer, R., Snashall, N., Solberg, Ø.: Support varieties for selfinjective algebras. K-Theory 33(1), 67–87 (2004)

    Article  MATH  Google Scholar 

  16. Erdmann, K., Solberg, Ø.: Radical cube zero weakly symmetric algebras and support varieties. J. Pure Appl. Algebra 215(2), 185–200 (2011)

    Article  MATH  Google Scholar 

  17. Evens, L.: The cohomology ring of a finite group. Trans. Am. Math. Soc. 101, 224–239 (1961)

    Article  MATH  Google Scholar 

  18. Furuya, T., Snashall, N.: Support varieties for modules over stacked monomial algebras. Commun. Algebra 39(8), 2926–2942 (2011)

    Article  MATH  Google Scholar 

  19. Gessel, I.M.: An application of the Goulden–Jackson cluster theorem. arXiv e-prints, arXiv:2011.03171 (2020)

  20. Golod, E.: The cohomology ring of a finite \(p\)-group. Dokl. Akad. Nauk SSSR 125, 703–706 (1959)

    MATH  Google Scholar 

  21. Govorov, V.E.: The global dimension of algebras. Mat. Zametki 14, 399–406 (1973)

    MATH  Google Scholar 

  22. Green, E.L., Happel, D., Zacharia, D.: Projective resolutions over Artin algebras with zero relations. Ill. J. Math. 29(1), 180–190 (1985)

    MATH  Google Scholar 

  23. Green, E.L., Solberg, Ø., Zacharia, D.: Minimal projective resolutions. Trans. Am. Math. Soc. 353(7), 2915–2939 (2001)

    Article  MATH  Google Scholar 

  24. Green, E.L., Zacharia, D.: The cohomology ring of a monomial algebra. Manuscr. Math. 85(1), 11–23 (1994)

    Article  MATH  Google Scholar 

  25. Green, E.L., Hille, L., Schroll, S.: Algebras and varieties. Algebra Represent. Theory 24(2), 367–388 (2021)

    Article  MATH  Google Scholar 

  26. Green, E.L., Kirkman, E., Kuzmanovich, J.: Finitistic dimensions of finite-dimensional monomial algebras. J. Algebra 136(1), 37–50 (1991)

    Article  MATH  Google Scholar 

  27. Green, E.L., Snashall, N., Solberg, Ø.: The Hochschild cohomology ring modulo nilpotence of a monomial algebra. J. Algebra Appl. 5(2), 153–192 (2006)

    Article  MATH  Google Scholar 

  28. Gruenberg, K.W.: The universal coefficient theorem in the cohomology of groups. J. Lond. Math. Soc. 43, 239–241 (1968)

    Article  MATH  Google Scholar 

  29. Gulliksen, T.H.: A change of ring theorem with applications to Poincaré series and intersection multiplicity. Math. Scand. 34, 167–183 (1974)

    Article  MATH  Google Scholar 

  30. He, J.-W., Di-Ming, L.: Higher Koszul algebras and \(A\)-infinity algebras. J. Algebra 293(2), 335–362 (2005)

    Article  MATH  Google Scholar 

  31. Herscovich, E.: A simple note on the Yoneda (co)algebra of a monomial algebra. Ukraïn. Mat. Zh. 73(2), 275–277 (2021)

    Article  MATH  Google Scholar 

  32. Herscovich, E.: Using torsion theory to compute the algebraic structure of Hochschild (co)homology. Homol. Homot. Appl. 20(1), 117–139 (2018)

    Article  MATH  Google Scholar 

  33. Igusa, K., Zacharia, D.: Syzygy pairs in a monomial algebra. Proc. Am. Math. Soc. 108(3), 601–604 (1990)

    Article  MATH  Google Scholar 

  34. Iwanaga, Y.: On rings with finite self-injective dimension. II. Tsukuba J. Math. 4(1), 107–113 (1980)

    Article  MATH  Google Scholar 

  35. Iyudu, N.: On the proof of the homology conjecture for monomial non-unital algebras. Preprints IHES, IHES/M/16/15 (2016)

  36. Iyudu, N., Vlassopoulos, I.: Homologies of monomial operads and algebras. arXiv e-prints, arXiv:2008.00985 (Nov 2020)

  37. Keller, B.: \(A\)-infinity algebras, modules and functor categories. In: Trends in representation theory of algebras and related topics, volume 406 of Contemp. Math., pp. 67–93. Amer. Math. Soc., Providence, RI (2006)

  38. Loday, J.-L., Vallette, B.: Algebraic operads. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346. Springer, Heidelberg (2012)

  39. Lu, D.M., Palmieri, J.H., Wu, Q.S., Zhang, J.J.: \(A_\infty \)-algebras for ring theorists. In: Proceedings of the International Conference on Algebra, vol. 11, pp. 91–128 (2004)

  40. Lu, D.-M., Palmieri, J.H., Wu, Q.-S., Zhang, J.J.: \(A\)-infinity structure on Ext-algebras. J. Pure Appl. Algebra 213(11), 2017–2037 (2009)

    Article  MATH  Google Scholar 

  41. Ming, L., Zhu, B.: Singularity categories of Gorenstein monomial algebras. J. Pure Appl. Algebra 225(8), 39 (2021). (Paper No. 106651)

    MATH  Google Scholar 

  42. Nagase, H.: Hochschild cohomology and Gorenstein Nakayama algebras. In: Proceedings of the 43rd Symposium on Ring Theory and Representation Theory, pp. 37–41. Symp. Ring Theory Represent. Theory Organ. Comm., Soja (2011)

  43. Prouté, A.: \(A_\infty \)-structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations. Represent. Theory Appl. Categ., (21), 1–99 (2011). Reprint of the 1986 original, With a preface to the reprint by Jean-Louis Loday

  44. Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Developments in Mathematics, vol. 20. Springer, New York (2009)

    Book  Google Scholar 

  45. Snashall, N., Solberg, Ø.: Support varieties and Hochschild cohomology rings. Proc. Lond. Math. Soc. (3) 88(3), 705–732 (2004)

    Article  MATH  Google Scholar 

  46. Tamaroff, P.: Minimal models for monomial algebras. Homol. Homot. Appl. 23(1), 341–366 (2021)

    Article  MATH  Google Scholar 

  47. Ufnarovskij, V.A.: Combinatorial and asymptotic methods in algebra. In: Algebra, VI, volume 57 of Encyclopaedia Math. Sci., pp. 1–196. Springer, Berlin (1995)

  48. Venkov, B.B.: Cohomology algebras for some classifying spaces. Dokl. Akad. Nauk SSSR 127, 943–944 (1959)

    MATH  Google Scholar 

  49. Wu, Q.-S., Zhang, J.J.: Dualizing complexes over noncommutative local rings. J. Algebra 239(2), 513–548 (2001)

    Article  MATH  Google Scholar 

  50. Zaks, A.: Injective dimension of semi-primary rings. J. Algebra 13, 73–86 (1969)

    Article  MATH  Google Scholar 

  51. Zimmermann-Huisgen, B.: Predicting syzygies over monomial relations algebras. Manuscr. Math. 70(2), 157–182 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Ben Briggs for useful discussions and to Ira Gessel for sending a copy of [19]. A crucial thank you is due to Joe Chuang and Alastair King who kindly shared with us their unpublished manuscript from fifteen years ago that highlights the importance of previous work of Gruenberg [28] for computing higher structures on Ext algebras of monomial algebras; the beautiful example of Section 1.3 is also coming from their unpublished note (and is reproduced here with their permission). Their work on higher structures ultimately led to a paper on functorial non-minimal resolutions of general associative algebras [12], and their ideas related to the specific case of monomial algebras never made it to that paper. However, it was of utmost importance for the genesis of this paper, and we cannot thank them enough for sharing their work with us. We also are indebted to Bernhard Keller who documented the existence of unpublished work of Chuang and King in his survey [37]. The second named author was supported by Simons Foundation (through a postdoctoral fellowship at Hamilton Mathematics Institute). Preparation of the final version of this paper was supported by Institut Universitaire de France, by the University of Strasbourg Institute for Advanced Study (USIAS) through the Fellowship USIAS-2021-061 within the French national program “Investment for the future” (IdEx-Unistra), and by the French national research agency project ANR-20-CE40-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Dotsenko.

Additional information

To Ed Green with deep admiration of his work on the homology theory of monomial algebras.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotsenko, V., Gélinas, V. & Tamaroff, P. Finite generation for Hochschild cohomology of Gorenstein monomial algebras. Sel. Math. New Ser. 29, 14 (2023). https://doi.org/10.1007/s00029-022-00817-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00817-8

Keywords

Mathematics Subject Classification

Navigation