Skip to main content
Log in

Two kinds of real lines on real del Pezzo surfaces of degree 1

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Z: How do you draw the line between algebra and topology?

Abstract

We show how the real lines on a real del Pezzo surface of degree 1 can be split into two species, elliptic and hyperbolic, via a certain distinguished, intrinsically defined, \({\text {Pin}}^-\)-structure on the real locus of the surface. We prove that this splitting is invariant under real automorphisms and real deformations of the surface, and that the difference between the total numbers of hyperbolic and elliptic lines is always equal to 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allcock, D., Carlson, J. A., Toledo, D.: Hyperbolic geometry and moduli of real cubic surfaces. Ann. Sci. c. Norm. Supr. (4) 43(1), 69–115 (2010)

  2. Atiyah, M.: On analytic surfaces with double points. Proc. Roy. Soc. Lond. Ser. A 247, 237–244 (1958)

    Article  MathSciNet  Google Scholar 

  3. Bachmann, T., Wickelgren, K.: \(A^1\)-Euler classes: six functors formalisms, dualities, integrality and linear subspaces of complete intersections. arXiv:2002.01848

  4. Brugallé, E.: Symmetric plane curves of degree 7: pseudoholomorphic and algebraic classifications. J. Reine Angew. Math. 612, 129–171 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Comessatti, A.: Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale. Math. Ann. 73, 1–72 (1912)

    Article  MathSciNet  Google Scholar 

  6. Degtyarev, A., Itenberg, I., Kharlamov, V.: Real Enriques Surfaces. Springer, Lecture Notes in Mathematics 1746 (2000)

  7. Dolgachev, I.V.: Classical algebraic geometry. A modern view. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  8. Finashin, S., Kharlamov, V.: Abundance of real lines on real projective hypersurfaces. Int. Math. Res. Not. IMRN 46 (2013)

  9. Finashin, S., Kharlamov, V.: Abundance of 3-Planes on Real Projective Hypersurfaces. Arnold Math. J. 1(2), 171–199 (2015)

    Article  MathSciNet  Google Scholar 

  10. Finashin, S., Kharlamov, V.: Segre indices and Welschinger weights. Int. Math. Res. Not. (2019), rnz208, https://doi.org/10.1093/imrn/rnz208

  11. Itenberg, I., Kharlamov, V., Shustin, E.: Relative enumerative invariants of real nodal del Pezzo surfaces. Selecta Math. 24(2), 2927–2990 (2018)

    Article  MathSciNet  Google Scholar 

  12. Itenberg, I., Itenberg, V.: Symmetric sextics and auxiliary conics. Zap. Nauchn. Sem. POMI. 279, 154–167 (2001)

    MATH  Google Scholar 

  13. Kass, J.L., Wickelgren, K.: An arithmetic count of the lines on a smooth cubic surface. arXiv:1708.01175 (to appear in Compositio Mathematica)

  14. Kirby, R., Taylor, L.: Pin-Structures on Low-Dimensional Manifolds. Geometry of Low-dimensional Manifolds, 2. Ed. S.K. Donaldson, C.B. Thomas, London Math. Soc. Lect. Notes (151). Cambridge University Press, Cambridge (1991)

  15. Larson, H., Vogt, I.: An enriched count of the bitangents to a smooth plane quartic curve. arXiv:1909.05945, 17 p

  16. Manin, Y.I.: Cubic forms: algebra, geometry, arithmetic. North-Holland Publishing Company, 291 pp (1974)

  17. McKay, B.: The Lie Hasse package. https://mirrors.ircam.fr/pub/CTAN/graphics/pgf/contrib/lie-hasse/lie-hasse.pdf

  18. Okonek, C., Teleman, A.: Intrinsic signs and lower bounds in real algebraic geometry. J. Reine Ang. Math. 688, 219–241 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ringel, C.M.: The root posets and their rich antichains. arXiv:1306.1593, pp 1 – 25

  20. Russo, F.: The antibirational involutions of the plane and the classification of real del Pezzo surfaces. in Algebraic geometry de Gruyter, Berlin, pp 289–312 (2002)

  21. Segre, B.: The non-singular Cubic Surface. Clarendon Press, Oxford, England (1942)

    MATH  Google Scholar 

  22. Solomon, J.: Intersection Theory on the Moduli Space of Holomorphic Curves with Lagrangian Boundary Conditions. arXiv:0606429, pp 1 – 79

  23. Trilles, S.: Topologie des \((M-2)\)- courbes réelles symétriques. Bull. Lond. Math. Soc. 35(2), 161–178 (2003)

    Article  MathSciNet  Google Scholar 

  24. Walcher, J.: Opening mirror symmetry on the quintic. Commun. Math. Phys. 276(3), 671–689 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Our special thanks go to R. Rasdeaconu, discussions with whom were among the motivations for this study. For the artwork with the Hasse diagram of \(E_8\) on Fig. 2 we used Ringel’s sample in [19], and for the diagrams on Fig. 3, McKay’s Lie Hasse package [17]. The second author was partially funded by the grant ANR-18-CE40-0009 of Agence Nationale de Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kharlamov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finashin, S., Kharlamov, V. Two kinds of real lines on real del Pezzo surfaces of degree 1. Sel. Math. New Ser. 27, 83 (2021). https://doi.org/10.1007/s00029-021-00690-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00690-x

Keywords

Mathematics Subject Classification

Navigation