Skip to main content
Log in

Stable pairs with a twist and gluing morphisms for moduli of surfaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We propose an alternative definition for families of stable pairs (XD) over an arbitrary (possibly non-reduced) base in the case in which D is reduced, by replacing (XD) with an appropriate orbifold pair \((\mathcal {X},\mathcal {D})\). This definition of a stable family ends up being equivalent to previous ones, but has the advantage of being more amenable to the tools of deformation theory. Adjunction for \((\mathcal {X},\mathcal {D})\) holds on the nose; there is no correction term coming from the different. This leads to the existence of functorial gluing morphisms for families of stable surfaces and functorial morphisms from \((n + 1)\) dimensional stable pairs to n dimensional polarized orbispaces. As an application, we study the deformation theory of some surface pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this setting the family of divisors is automatically flat (see Corollary 3.6).

  2. The volume of a line bundle on \(\mathcal {X}\) is defined to be the volume of the corresponding \(\mathbb {Q}\)-Cartier divisor on the coarse space.

  3. For properties of group quotients of DM stack, see [40].

  4. Such pushouts are often called pinchings or Ferrand pushouts.

References

  1. Ascher, K., Bejleri, D.: Compact Moduli of Elliptic K3 Surfaces (2019)

  2. Abramovich, D., Brendan, H.: Stable varieties with a twist. Classif. Algebr. Var. 27, 1–38 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Altmann, K., Kollár, J.: The dualizing sheaf on first-order deformations of toric surface singularities. J. Reine Angew. Math. (Crelles J.) (2016)

  4. Alexeev, V.: Boundedness and K2 for log surfaces. Int. J. Math. 5(6), 779–810 (1994)

    Article  Google Scholar 

  5. Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Ann. Inst. Fourier (Grenoble) 58(4), 1057–1091 (2008)

    Article  MathSciNet  Google Scholar 

  6. Abramovich, D., Olsson, M., Vistoli, A.: Twisted stable maps to tame Artin stacks. J. Algebr. Geom. 20(3), 399–477 (2011)

    Article  MathSciNet  Google Scholar 

  7. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1993)

  9. Conrad, B.: Grothendieck Duality and Base Change. Lecture Notes in Mathematics, vol. 1750. Springer, Berlin (2000)

    Book  Google Scholar 

  10. Deopurkar, D., Han, C.: Stable Log Surfaces, Admissible Covers, and Canonical Curves of Genus 4. arXiv:1807.08413 (2018)

  11. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75–109 (1969)

    Article  MathSciNet  Google Scholar 

  12. Greb, D., Kebekus, S., Kovacs, S.J., Peternell, T.: Differential forms on log canonical spaces. Publ. Math. Inst. Hautes Études Sci. 114, 87–169 (2011)

    Article  MathSciNet  Google Scholar 

  13. Grothendieck, A.: Éíements de géomètrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. étude locale des schémas et des morphismes de schémas, troisiéme partie. Inst. Hautes Études Sci. Publ. Math. 28 (1966)

  14. Hacking, P.: Compact moduli of plane curves. Duke Math. J. 124(2), 213–257 (2004)

    Article  MathSciNet  Google Scholar 

  15. Hassett, B., Kovács, S.: Reflexive pull-backs and base extension. J. Algebr. Geom. 13(2), 233–247 (2004)

    Article  MathSciNet  Google Scholar 

  16. Hacon, C.D., McKernan, J., Xu, C.: Boundedness of moduli of varieties of general type. J. Eur. Math. Soc. (JEMS) 20(4), 865–901 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hacon, C.D., Xu, C.: Existence of log canonical closures. Invent. Math. 192(1), 161–195 (2013)

    Article  MathSciNet  Google Scholar 

  18. Karu, K.: Minimal models and boundedness of stable varieties. J. Algebr. Geom. 9(1), 93–109 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Kollár, J., Kovács, S.: Deformations of log canonical and F-pure singularities. ArXiv e-prints (2018) Available at 1807.07417

  20. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998). (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original)

  21. Knudsen, F.F.: The projectivity of the moduli space of stable curves. III. The line bundles on Mg,n, and a proof of the projectivity of Mg,n in characteristic 0. Math. Scand. 52(2), 200–212 (1983)

    Article  MathSciNet  Google Scholar 

  22. Kollár, J.: Hulls and Husks. arXiv:0805.0576 (2008)

  23. Kollár, J.: Simultaneous normalization and algebra husks. Asian J. Math. 15(3), 437–449 (2011)

    Article  MathSciNet  Google Scholar 

  24. Kollár, J.: Moduli of varieties of general type. Handb. Moduli II, 131–157 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Kollár, J.: Singularities of the Minimal Model Program. Cambridge Tracts in Mathematics, vol. 200. Cambridge University Press, Cambridge (2013). (With a collaboration of Sándor Kovács)

  26. Kollár, J.: Families of Varieties of General Type. https://web.math.princeton.edu/~kollar/ (2017)

  27. Kollár, J.: Families of Divisors. arXiv:1910.00937 (2019)

  28. Kollár, J.: Projectivity of complete moduli. J. Differ. Geom. 32(1), 235–268 (1990)

    Article  MathSciNet  Google Scholar 

  29. Kovács, S.: Rational Singularities. ArXiv e-prints (2017) Available at 1703.02269

  30. Kovács, S., Patakfalvi, Z.: Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension. J. Am. Math. Soc. 30(4), 959–1021 (2017)

    Article  MathSciNet  Google Scholar 

  31. Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988)

    Article  MathSciNet  Google Scholar 

  32. Lieblich, M.: Remarks on the stack of coherent algebras. Int. Math. Res. Not. Article ID: 75273, 12 (2006)

  33. Lee, Y., Nakayama, N.: Grothendieck duality and Q-Gorenstein morphisms. Publ. Res. Inst. Math. Sci. 54(3), 517–648 (2018)

    Article  MathSciNet  Google Scholar 

  34. Matsumura, H.: Commutative Ring Theory, Second. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1989). (Translated from the Japanese by M. Reid)

  35. Miranda, R.: The Basic Theory of Elliptic Surfaces. Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa (1989)

  36. Olsson, M.C.: Deformation theory of representable morphisms of algebraic stacks. Math. Z. 253(1), 25–62 (2006)

    Article  MathSciNet  Google Scholar 

  37. Olsson, M.C.: Hom-stacks and restriction of scalars. Duke Math. J. 134(1), 139–164 (2006)

    Article  MathSciNet  Google Scholar 

  38. Olsson, M.: Algebraic Spaces and Stacks. American Mathematical Society Colloquium Publications, vol. 62. American Mathematical Society, Providence (2016)

    Google Scholar 

  39. Patakfalvi, Z.: Fibered stable varieties. Trans. Am. Math. Soc. 368(3), 1837–1869 (2016)

    Article  MathSciNet  Google Scholar 

  40. Romagny, M.: Group actions on stacks and applications. Mich. Math. J. 53(1), 209–236 (2005)

    Article  MathSciNet  Google Scholar 

  41. Rydh, D.: Compactification of Tame Deligne-Mumford Stacks. Preprint (2014)

  42. Schwede, S.: Obtaining Non-normal Varieties by Pushout. https://mathoverflow.net/q/186650

  43. Włodarczyk, J.: Simple Hironaka resolution in characteristic zero. J. Am. Math. Soc. 18(4), 779–822 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dan Abramovich, Shamil Asgarli, Brendan Hassett, János Kollár, Sándor Kovács, Davesh Maulik, Jonathan Wise, and Chenyang Xu for many helpful conversations. We thank David Rydh for informing us of Theorem 5.12 and its proof. We also thank the referees for reading the draft carefully and giving insightful feedback. The first author is supported by an NSF Postdoctoral Fellowship DMS-1803124 and was partially supported by NSF Grant DMS-1759514. The second author is partially supported by NSF Grant DMS-1759514. The second author also thanks the UC Berkeley Department of Mathematics for their hospitality while part of this research was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dori Bejleri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejleri, D., Inchiostro, G. Stable pairs with a twist and gluing morphisms for moduli of surfaces. Sel. Math. New Ser. 27, 40 (2021). https://doi.org/10.1007/s00029-021-00661-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00661-2

Mathematics Subject Classification

Navigation