Skip to main content
Log in

Selections of bounded variation for roots of smooth polynomials

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove that the roots of a smooth monic polynomial with complex-valued coefficients defined on a bounded Lipschitz domain \(\Omega \) in \(\mathbb {R}^m\) admit a parameterization by functions of bounded variation uniformly with respect to the coefficients. This result is best possible in the sense that discontinuities of the roots are in general unavoidable due to monodromy. We show that the discontinuity set can be chosen to be a finite union of smooth hypersurfaces. On its complement the parameterization of the roots is of optimal Sobolev class \(W^{1,p}\) for all \(1 \le p < \frac{n}{n-1}\), where n is the degree of the polynomial. All discontinuities are jump discontinuities. For all this we require the coefficients to be of class \(C^{k-1,1}(\overline{\Omega })\), where k is a positive integer depending only on n and m. The order of differentiability k is not optimal. However, in the case of radicals, i.e., for the solutions of the equation \(Z^r = f\), where f is a complex-valued function and \(r\in \mathbb {R}_{>0}\), we obtain optimal uniform bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.W.: Choosing roots of polynomials smoothly. Isr. J. Math. 105, 203–233 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Almgren Jr., F.J.: Almgren’s Big Regularity Paper, World Scientific Monograph Series in Mathematics, vol. 1. World Scientific Publishing Co., Inc., River Edge (2000)

    Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  4. Bates, S.M.: Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Am. Math. Soc. 117(1), 279–283 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bony, J.-M., Broglia, F., Colombini, F., Pernazza, L.: Nonnegative functions as squares or sums of squares. J. Funct. Anal. 232(1), 137–147 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Bony, J.-M., Colombini, F., Pernazza, L.: On the differentiability class of the admissible square roots of regular nonnegative functions. In: Bove, A., Colombini, F., Del Santo, D. (eds.) Phase Space Analysis of Partial Differential Equations, Progress in Nonlinear Differential Equations Applications, vol. 69, pp. 45–53. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  7. Bony, J.-M., Colombini, F., Pernazza, L.: On square roots of class \(C^m\) of nonnegative functions of one variable. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9(3), 635–644 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Bronshtein, M. D.: Smoothness of roots of polynomials depending on parameters. Sibirsk. Mat. Zh. 20(3), 493–501, 690 (1979) English transl. in Siberian Math. J. 20, 347–352 (1980)

    MathSciNet  Google Scholar 

  9. Brudnyi, A., Brudnyi, Y.: Methods of Geometric Analysis in Extension and Trace Problems. vol. 1, Monographs in Mathematics, vol. 102, Birkhäuser/Springer Basel AG, Basel (2012)

    MATH  Google Scholar 

  10. Chaumat, J., Chollet, A.-M.: Division par un polynôme hyperbolique. Can. J. Math. 56(6), 1121–1144 (2004)

    MATH  Google Scholar 

  11. Colombini, F., Jannelli, E., Spagnolo, S.: Well-posedness in the Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 10(2), 291–312 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Colombini, F., Lerner, N.: Une procedure de Calderón–Zygmund pour le problème de la racine \(k\)-ième. Ann. Mat. Pura Appl. (4) 182(2), 231–246 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Colombini, F., Orrù, N., Pernazza, L.: On the regularity of the roots of hyperbolic polynomials. Isr. J. Math. 191, 923–944 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Colombini, F., Orrù, N., Pernazza, L.: On the regularity of the roots of a polynomial depending on one real parameter. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(4), 747–775 (2017)

    MathSciNet  MATH  Google Scholar 

  15. de la Llave, R., Obaya, R.: Regularity of the composition operator in spaces of Hölder functions. Discrete Contin. Dyn. Syst. 5(1), 157–184 (1999)

    MATH  Google Scholar 

  16. De Lellis, C., Spadaro, E.N.: \(Q\)-valued functions revisited. Mem. Am. Math. Soc. 211(991), vi+79 (2011)

    MathSciNet  MATH  Google Scholar 

  17. de Pascale, L.: The Morse–Sard theorem in Sobolev spaces. Indiana Univ. Math. J. 50(3), 1371–1386 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Federer, H.: Measure and area. Bull. Am. Math. Soc. 58, 306–378 (1952)

    MathSciNet  MATH  Google Scholar 

  19. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

  20. Figalli, A.: A simple proof of the Morse-Sard theorem in Sobolev spaces. Proc. Am. Math. Soc. 136(10), 3675–3681 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Ghisi, M., Gobbino, M.: Higher order Glaeser inequalities and optimal regularity of roots of real functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 1001–1021 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Glaeser, G.: Racine carrée d’une fonction différentiable. Ann. Inst. Fourier (Grenoble) 13(2), 203–210 (1963)

    MathSciNet  MATH  Google Scholar 

  23. Kato, T.: Perturbation Theory for Linear Operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, vol. 132. Springer, Berlin (1976)

  24. Khudyaev, S.I., Vol’pert, A.I.: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Mechanics: Analysis, vol. 8. Martinus Nijhoff Publishers, Dordrecht (1985)

  25. Kriegl, A., Losik, M., Michor, P.W.: Choosing roots of polynomials smoothly. II. Isr. J. Math. 139, 183–188 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Kriegl, A., Losik, M., Michor, P.W., Rainer, A.: Lifting smooth curves over invariants for representations of compact Lie groups. II. J. Lie Theory 15(1), 227–234 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Malgrange, B.: Ideals of Differentiable Functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3. Tata Institute of Fundamental Research, Bombay (1967)

  28. Malý, J., Swanson, D., Ziemer, W.P.: The co-area formula for Sobolev mappings. Trans. Am. Math. Soc. 355(2), 477–492 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Mandai, T.: Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter. Bull. Fac. Gen. Ed. Gifu Univ. 21, 115–118 (1985)

    MathSciNet  Google Scholar 

  30. Norton, A.: The Zygmund Morse–Sard theorem. J. Geom. Anal. 4(3), 403–424 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Parusiński, A., Rainer, A.: A new proof of Bronshtein’s theorem. J. Hyperbolic Differ. Equ. 12(4), 671–688 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Parusiński, A., Rainer, A.: Regularity of roots of polynomials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16, 481–517 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Parusiński, A., Rainer, A.: Optimal Sobolev regularity of roots of polynomials. Ann. Sci. Éc. Norm. Supér. (4) 51(5), 1343–1387 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford (2002)

  35. Rainer, A.: Perturbation of complex polynomials and normal operators. Math. Nachr. 282(12), 1623–1636 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Rainer, A.: Quasianalytic multiparameter perturbation of polynomials and normal matrices. Trans. Am. Math. Soc. 363(9), 4945–4977 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Rainer, A.: Smooth roots of hyperbolic polynomials with definable coefficients. Isr. J. Math. 184, 157–182 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Rainer, A.: Perturbation theory for normal operators. Trans. Am. Math. Soc. 365(10), 5545–5577 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Rainer, A.: Differentiable roots, eigenvalues, and eigenvectors. Isr. J. Math. 201(1), 99–122 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 113(1), 600–619 (1937)

    MathSciNet  MATH  Google Scholar 

  41. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 113(1), 677–685 (1937)

    MathSciNet  MATH  Google Scholar 

  42. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 116(1), 555–570 (1939)

    MathSciNet  MATH  Google Scholar 

  43. Rellich, F.: Störungstheorie der Spektralzerlegung. IV. Math. Ann. 117, 356–382 (1940)

    MathSciNet  MATH  Google Scholar 

  44. Rellich, F.: Störungstheorie der Spektralzerlegung. V. Math. Ann. 118, 462–484 (1942)

    MathSciNet  MATH  Google Scholar 

  45. Rellich, F.: Perturbation Theory of Eigenvalue Problems, Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz. Gordon and Breach Science Publishers, New York (1969)

  46. Spagnolo, S.: On the absolute continuity of the roots of some algebraic equations. Ann. Univ. Ferrara Sez. VII (N.S.) 45(1999), (suppl.), 327–337 (2000), Workshop on Partial Differential Equations (Ferrara, 1999)

  47. Spagnolo, S.: Local and semi-global solvability for systems of non-principal type. Commun. Partial Differ. Equ. 25(5–6), 1115–1141 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30, Princeton University Press, Princeton (1970)

  49. Tarama, S.: On the lemma of Colombini. Jannelli and Spagnolo. Mem. Fac. 41, 111–115 (2000)

    Google Scholar 

  50. Tarama, S.: Note on the Bronshtein theorem concerning hyperbolic polynomials. Sci. Math. Jpn. 63(2), 247–285 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Wakabayashi, S.: Remarks on hyperbolic polynomials. Tsukuba J. Math. 10(1), 17–28 (1986)

    MathSciNet  MATH  Google Scholar 

  52. Ziemer, W.P.: Weakly Differentiable Functions, Graduate Texts in Mathematics, vol. 120, Springer, New York (1989). Sobolev spaces and functions of bounded variation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Rainer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Austrian Science Fund (FWF) Grant P 26735-N25, by ANR Project LISA (ANR-17-CE40-0023-03), and by ERC advanced Grant 320845 SCAPDE.

Appendix A: Sobolev regularity of continuous roots

Appendix A: Sobolev regularity of continuous roots

The next theorem is a refinement of [33, Theorem 2] in the case that \(\Omega \) is a Lipschitz domain.

Theorem A.1

Let \(\Omega \subseteq \mathbb {R}^m\) be a bounded Lipschitz domain. Let \(P_a\) be a monic polynomial (1.1) with coefficients \(a_j \in C^{n-1,1}({\overline{\Omega }})\), \(j = 1,\ldots ,n\). Let \(\lambda \in C^0(V)\) be a root of \(P_a\) on an open subset \(V \subseteq \Omega \). Then \(\lambda \) belongs to the Sobolev space \(W^{1,p}(V)\) for every \(1 \le p < \frac{n}{n-1}\). The distributional gradient \(\nabla \lambda \) satisfies

$$\begin{aligned} \Vert \nabla \lambda \Vert _{L^p(V)} \le C(m,n,p,\Omega ) \max _{1 \le j \le n} \Vert a_j\Vert ^{1/j}_{C^{n-1,1}({\overline{\Omega }})}. \end{aligned}$$
(A.1)

Proof

By [33, Theorem 1], \(\lambda \) is absolutely continuous along affine lines parallel to the coordinate axes (restricted to V). So \(\lambda \) possesses the partial derivatives \(\partial _i \lambda \), \(i=1,\ldots ,m\), which are defined almost everywhere and are measurable.

Set \(x=(t,y)\), where \(t=x_1\), \(y=(x_2,\ldots ,x_m)\), and let \(V_1\) be the orthogonal projection of V on the hyperplane \(\{x_1=0\}\). For each \(y \in V_1\) we denote by \(V^y := \{t \in \mathbb {R}{:}\,(t,y) \in V\}\) the corresponding section of V.

Let \(\lambda ^y_j\), \(j=1,\ldots ,n\), be a continuous system of the roots of \(P_a(\cdot ,y)\) on \(V^y\) such that \(\lambda (\cdot ,y) = \lambda ^y_1\); it exists since \(\lambda (\cdot ,y)\) can be completed to a continuous system of the roots of \(P_a(\cdot ,y)\) on each connected component of \(V^y\) by [38, Lemma 6.17]. Our goal is to bound

$$\begin{aligned} \Vert \partial _t\lambda (\cdot ,y)\Vert _{L^p(V^y)} = \Vert (\lambda ^y_1)'\Vert _{L^p(V^y)} \end{aligned}$$

uniformly with respect to \(y \in V_1\).

Let \(R= I_1 \times \cdots \times I_m \subseteq \mathbb {R}^m\) be an open box containing \(\Omega \) and such that \(|I_i| \le {\text {diam}}(\Omega )\) for all \( i =1,\ldots ,m\). By Whitney’s extension theorem (cf. Sect. 3.2), the coefficients \(a_j\) of \(P_a\) admit a \(C^{n-1,1}\)-extension \({\hat{a}}_j\) to \(\mathbb {R}^m\) such that

$$\begin{aligned} \max _{1 \le j \le n} \Vert {\hat{a}}_j\Vert ^{1/j}_{C^{n-1,1}({\overline{R}})} \le C(m,n,\Omega )\, \max _{1 \le j \le n} \Vert a_j\Vert ^{1/j}_{C^{n-1,1}(\overline{\Omega })}. \end{aligned}$$
(A.2)

Let \(\mathcal {C}^y\) denote the set of connected components J of the open subset \(V^y \subseteq \mathbb {R}\). For each \(J \in \mathcal {C}^y\) we extend the system of roots \(\lambda ^y_j|_J\), \(j=1,\ldots ,n\), continuously to \(I_1\), i.e., we choose continuous functions \(\lambda ^{y,J}_j\), \(j = 1,\ldots , n\), on \(I_1\) such that \(\lambda ^{y,J}_j|_J = \lambda ^y_j|_J\) for all j and

$$\begin{aligned} P_{{\hat{a}}}(t,y)(Z) = \prod _{j=1}^n (Z-\lambda ^{y,J}_j(t)), \quad t \in I_1. \end{aligned}$$

This is possible since \(\lambda ^y_j|_J\) has a continuous extension to the endpoints of the (bounded) interval J, by [26, Lemma 4.3], and can then be extended on the left and on the right of J by a continuous system of the roots of \(P_{{\hat{a}}}(\cdot ,y)\) after suitable permutations.

By [33, Theorem 1], for each \(y \in V_1\), \(J \in \mathcal {C}^y\), and \(j=1,\ldots ,n\), the function \(\lambda ^{y,J}_j\) is absolutely continuous on \(I_1\) and \((\lambda ^{y,J}_j)' \in L^p(I_1)\), for \(1 \le p < n/(n-1)\), with

$$\begin{aligned} \Vert (\lambda ^{y,J}_j)'\Vert _{L^p(I_1)} \le C(n,p,|I_1|) \, \max _{1 \le i \le n} \Vert {\hat{a}}_i\Vert ^{1/i}_{C^{n-1,1}({\overline{R}})}. \end{aligned}$$
(A.3)

Let \(J,J_0 \in \mathcal {C}^y\) be arbitrary. By [32, Lemma 3.6], \((\lambda ^y_j)'\) as well as \((\lambda ^{y,J_0}_j)'\) belong to \(L^p(J)\) and we have

$$\begin{aligned} \sum _{j=1}^n \Vert (\lambda ^y_j)'\Vert _{L^p(J)}^p = \sum _{j=1}^n \Vert (\lambda ^{y,J}_j)'\Vert _{L^p(J)}^p = \sum _{j=1}^n \Vert (\lambda ^{y,J_0}_j)'\Vert _{L^p(J)}^p. \end{aligned}$$

Thus,

$$\begin{aligned} \sum _{j=1}^n \Vert (\lambda ^y_j)'\Vert _{L^p(V^y)}^p&= \sum _{J \in \mathcal {C}^y} \sum _{j=1}^n \Vert (\lambda ^y_j)'\Vert _{L^p(J)}^p = \sum _{J \in \mathcal {C}^y} \sum _{j=1}^n \Vert (\lambda ^{y,J_0}_j)'\Vert _{L^p(J)}^p \\&= \sum _{j=1}^n \Vert (\lambda ^{y,J_0}_j)'\Vert _{L^p(V^y)}^p \le \sum _{j=1}^n \Vert (\lambda ^{y,J_0}_j)'\Vert _{L^p(I_1)}^p. \end{aligned}$$

In particular, by (A.3),

$$\begin{aligned} \Vert \partial _t\lambda (\cdot ,y)\Vert _{L^p(V^y)} = \Vert (\lambda ^y_1)'\Vert _{L^p(V^y)} \le C(n,p,|I_1|) \, \max _{1 \le i \le n} \Vert {\hat{a}}_i\Vert ^{1/i}_{C^{n-1,1}({\overline{R}})}, \end{aligned}$$

and so, by Fubini’s theorem,

$$\begin{aligned} \int _{V} |\partial _1 \lambda (x)|^p\, dx&= \int _{V_1} \int _{V^y} |\partial _1 \lambda (t,y)|^p\, dt\, dy\\&\le \Big (C(n,p,|I_1|) \, \max _{1 \le i \le n} \Vert {\hat{a}}_i\Vert ^{1/i}_{C^{n-1,1}({\overline{R}})} \Big )^p \int _{V_1} \, dy. \end{aligned}$$

Thus, thanks to \(|I_1| \le {\text {diam}}(\Omega )\),

$$\begin{aligned} \Vert \partial _1 \lambda \Vert _{L^p(V)} \le C(n,p,{\text {diam}}(\Omega )) \, \max _{1 \le i \le n} \Vert {\hat{a}}_i\Vert ^{1/i}_{C^{n-1,1}({\overline{R}})}. \end{aligned}$$

In view of (A.2) this implies (A.1), since the other partial derivatives \(\partial _i \lambda \), \(i \ge 2\), are treated analogously. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parusiński, A., Rainer, A. Selections of bounded variation for roots of smooth polynomials. Sel. Math. New Ser. 26, 13 (2020). https://doi.org/10.1007/s00029-020-0538-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-0538-z

Keywords

Mathematics Subject Classification

Navigation