Skip to main content
Log in

The categoricity spectrum of large abstract elementary classes

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The categoricity spectrum of a class of structures is the collection of cardinals in which the class has a single model up to isomorphism. Assuming that cardinal exponentiation is injective (a weakening of the generalized continuum hypothesis, GCH), we give a complete list of the possible categoricity spectrums of an abstract elementary class with amalgamation and arbitrarily large models. Specifically, the categoricity spectrum is either empty, an end segment starting below the Hanf number, or a closed interval consisting of finite successors of the Löwenheim–Skolem–Tarski number (there are examples of each type). We also prove (assuming a strengthening of the GCH) that the categoricity spectrum of an abstract elementary class with no maximal models is either bounded or contains an end segment. This answers several longstanding questions around Shelah’s categoricity conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. That is, sentences like \(\forall x \exists y: x \cdot y = 1 \wedge y \cdot x = 1\): quantification is over elements and only finite conjunctions and disjunctions are allowed.

  2. The conjecture also appears as open problem D.3(a) in [3].

  3. For example, Theorem 5.33 gives new conditions for forking symmetry of independent sequences, a key difficulty in [36].

  4. Although this will not be used, it is known [39] that taking \(\theta = \text {cf} (\lambda )\) suffices: the conjunction of \(2^\lambda = \lambda ^+\) with the principle \(\Phi _{\lambda ^+} (\{\delta < \lambda ^+ \mid \text {cf} (\delta ) = \text {cf} (\lambda )\})\) is equivalent to \({\text {GCHWD}}(\lambda )\).

  5. If \({\mathbf {K}}\) is an AEC, \({\mathbf {S}}(M)\) will of course be a set.

  6. In Shelah’s original definition, only the set of basic types is required to be stable. However full stability follows, see [12, II.4.2].

  7. This is a special case of the definition of a skeleton, see [44, 5.3] but since we have no use for skeletons in this paper, we chose to only study the simpler case.

  8. Recall that by definition of \({\text {Cat}}({\mathbf {K}})\), this implies that \(\mu _1 \ge \text {LS}({\mathbf {K}})\).

References

  1. Łoś, J.: On the categoricity in power of elementary deductive systems and some related problems. Colloq. Math. 3(1), 58–62 (1954)

    MathSciNet  MATH  Google Scholar 

  2. Morley, M.: Categoricity in power. Trans. Am. Math. Soc. 114, 514–538 (1965)

    MathSciNet  MATH  Google Scholar 

  3. Shelah, S.: Classification Theory and the Number of Non-isomorphic Models, vol. 92, 2nd edn. Studies in logic and the foundations of mathematics, North-Holland (1990)

    MATH  Google Scholar 

  4. Hrushovski, E.: The Mordell–Lang conjecture for function fields. J. Am. Math. Soc. 9(3), 667–690 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Shelah, S.: Categoricity of uncountable theories. Leon, H., John, A., Chang, C.C., William, C., Dana, S., and Robert, V. (Eds.) Proceedings of the Tarski symposium, pp. 187–203. American Mathematical Society, Providence (1974)

  6. Shelah, S.: Classification theory for non-elementary classes I: the number of uncountable models of \(\psi \in {L}_{\omega _1, \omega }\) Part A. Isr. J. Math. 46(3), 214–240 (1983)

    MathSciNet  Google Scholar 

  7. Shelah, S.: Classification of non elementary classes II. Abstract elementary classes, Classification Theory (Chicago, IL, 1985). John T.B. (Ed.) Lecture Notes in Mathematics, vol. 1292, pp. 419–497. Springer, Berlin (1987)

  8. Zilber, B.: Pseudo-exponentiation on algebraically closed fields of characteristic zero. Ann. Pure Appl. Log. 132, 67–95 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Baldwin, J.T., Eklof, P.C., Trlifaj, J.: \({}^\perp {N}\) as an abstract elementary class. Ann. Pure Appl. Log. 149, 25–39 (2007)

    MathSciNet  MATH  Google Scholar 

  10. John, T.: Baldwin, Categoricity, University Lecture Series, vol. 50. American Mathematical Society, Providence (2009)

    Google Scholar 

  11. Grossberg, R.: Classification theory for abstract elementary classes. Contemp. Math. 302, 165–204 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Shelah, S.: Classification Theory for Abstract Elementary Classes, Studies in Logic: Mathematical Logic and Foundations, vol. 18. College Publications, London (2009)

    Google Scholar 

  13. Beke, T., Rosický, J.: Abstract elementary classes and accessible categories. Ann. Pure Appl. Log. 163, 2008–2017 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Michael, J.: Lieberman and Jiří Rosický, classification theory for accessible categories. J. Symb. Log. 81(1), 151–165 (2016)

    MathSciNet  Google Scholar 

  15. Shelah, S.: On what I do not understand (and have something to say), model theory. Math. Jpn. 51, 329–377 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Makkai, M., Shelah, S.: Categoricity of theories in \({L}_{\kappa,\omega }\), with \(\kappa \) a compact cardinal. Ann. Pure Appl. Log. 47, 41–97 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Shelah, S., Kolman, O.: Categoricity of theories in \(\mathbb{{L}}_{\kappa, \omega }\), when \(\kappa \) is a measurable cardinal Part I. Fundam. Math. 151, 209–240 (1996)

    MATH  Google Scholar 

  18. Boney, W.: Tameness from large cardinal axioms. J. Symb. Log. 79(4), 1092–1119 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Shelah, S.: Categoricity for abstract classes with amalgamation. Ann. Pure Appl. Log. 98(1), 261–294 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Baldwin, J.T.: Abstract elementary classes: some answers, more questions. http://homepages.math.uic.edu/~jbaldwin/pub/turino2.pdf, (2006)

  21. Vasey, S.: Downward categoricity from a successor inside a good frame. Ann. Pure Appl. Log. 168(3), 651–692 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Shelah, S., Vasey, S.: Categoricity and multidimensional diagrams. Preprint arXiv:1805.06291v2

  23. Shelah, S., Villaveces, A.: Toward categoricity for classes with no maximal models. Ann. Pure Appl. Log. 97, 1–25 (1999)

    MathSciNet  MATH  Google Scholar 

  24. VanDieren, M.: Categoricity in abstract elementary classes with no maximal models. Ann. Pure Appl. Log. 141, 108–147 (2006)

    MathSciNet  Google Scholar 

  25. VanDieren, M.: Erratum to “Categoricity in abstract elementary classes with no maximal models” [Ann. Pure Appl. Logic 141 (2006) 108-147]. Ann. Pure Appl. Log. 164(2), 131–133 (2013)

    MathSciNet  Google Scholar 

  26. Hart, B., Shelah, S.: Categoricity over \({P}\) for first order \({T}\) or categoricity for \(\phi \in {L}_{\omega _1, \omega }\) can stop at \(\aleph _k\) while holding for \(\aleph _0, \ldots, \aleph _{k - 1}\). Isr. J. Math. 70, 219–235 (1990)

    Google Scholar 

  27. Baldwin, J.T., Kolesnikov, A.: Categoricity, amalgamation, and tameness. Isr. J. Math. 170, 411–443 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Grossberg, R., VanDieren, M.: Galois-stability for tame abstract elementary classes. J. Math. Log. 6(1), 25–49 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Grossberg, R., VanDieren, M.: Shelah’s categoricity conjecture from a successor for tame abstract elementary classes. J. Symb. Log. 71(2), 553–568 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Grossberg, R., VanDieren, M.: Categoricity from one successor cardinal in tame abstract elementary classes. J. Math. Log. 6(2), 181–201 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Shelah, S.: Classification Theory for Abstract Elementary Classes 2, Studies in Logic: Mathematical Logic and Foundations, vol. 20. College Publications, London (2009)

    Google Scholar 

  32. Devlin, K.J., Shelah, S.: A weak version of \({\Diamond }\) which follows from \(2^{\aleph _0} < 2^{\aleph _1}\). Isr. J. Math. 29(2), 239–247 (1978)

    Google Scholar 

  33. Vasey, S.: Tameness from two successive good frames. Isr. J. Math. To appear. arXiv:1707.09008v5

  34. Grossberg, R., VanDieren, M., Villaveces, A.: Uniqueness of limit models in classes with amalgamation. Math. Log. Q. 62, 367–382 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Vasey, S.: On the uniqueness property of forking in abstract elementary classes. Math. Log. Q. 63(6), 598–604 (2017)

    MathSciNet  Google Scholar 

  36. Boney, W., Vasey, S.: Tameness and frames revisited. J. Symb. Log. 82(3), 995–1021 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Grossberg, R., Vasey, S.: Equivalent definitions of superstability in tame abstract elementary classes. J. Symb. Log. 82(4), 1387–1408 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Jarden, A., Shelah, S.: Non-forking frames in abstract elementary classes. Ann. Pure Appl. Log. 164, 135–191 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Shelah, S.: Diamonds. Proc. Am. Math. Soc. 138(6), 2151–2161 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Jech, T.: Set Theory, 3rd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  41. Shelah, S.: Universal classes, Classification theory Chicago, IL. John T.B., (Ed.) Lecture Notes in Mathematics, vol. 1292, pp. 264–418. Springer, Berlin (1985)

  42. Vasey, S.: Infinitary stability theory. Arc. Math. Log. 55, 567–592 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Boney, W., Vasey, S.: A survey on tame abstract elementary classes. In: José, I. (ed.) Beyond First Order Model Theory, pp. 353–427. CRC Press, Boca Raton (2017)

    Google Scholar 

  44. Vasey, S.: Building independence relations in abstract elementary classes. Ann. Pure Appl. Log. 167(11), 1029–1092 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Vasey, S.: Forking and superstability in tame AECs. J. Symb. Log. 81(1), 357–383 (2016)

    MathSciNet  MATH  Google Scholar 

  46. VanDieren, M.: Superstability and symmetry. Ann. Pure Appl. Log. 167(12), 1171–1183 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Boney, W., Grossberg, R., VanDieren, M., Vasey, S.: Superstability from categoricity in abstract elementary classes. Ann. Pure Appl. Log. 168(7), 1383–1395 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Vasey, S.: Saturation and solvability in abstract elementary classes with amalgamation. Arc. Math. Log. 56, 671–690 (2017)

    MathSciNet  MATH  Google Scholar 

  49. VanDieren, M.: Symmetry and the union of saturated models in superstable abstract elementary classes. Ann. Pure Appl. Log. 167(4), 395–407 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Boney, W., Grossberg, R., Kolesnikov, A., Vasey, S.: Canonical forking in AECs. Ann. Pure Appl. Log. 167(7), 590–613 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Boney, W., Vasey, S.: Good frames in the Hart–Shelah example. Arch. Math. Log. 57, 687–712 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Shelah, S., Vasey, S.: Abstract elementary classes stable in \(\aleph _0\). Ann. Pure Appl. Log. 169(7), 565–587 (2018)

    MATH  Google Scholar 

  53. Shelah, S.: A.E.C. With Not Too Many Models, pp. 367–402. De Gruyter, Berlin (2015)

    Google Scholar 

  54. VanDieren, M., Vasey, S.: Symmetry in abstract elementary classes with amalgamation. Arch. Math. Log. 56(3), 423–452 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Jarden, A., Shelah, S.: Non forking good frames without local character. Preprint arXiv.1105.3674v1

  56. Vasey, S.: Shelah’s eventual categoricity conjecture in universal classes: part II. Sel. Math. 23(2), 1469–1506 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Grossberg, R.: A course in model theory I, A book in preparation

  58. Shelah, S., Villaveces, A.: Categoricity may fail late. Preprint arXiv:math/0404258v1

  59. Vasey, S.: Shelah’s eventual categoricity conjecture in universal classes: part I. Ann. Pure Appl. Log. 168(9), 1609–1642 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Boney, W., Vasey, S.: Chains of saturated models in AECs. Arch. Math. Logic 56(3), 187–213 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank John T. Baldwin, Will Boney, and Marcos Mazari-Armida for comments that helped improve the presentation of this paper. We also thank the referee for multiple thorough reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Vasey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasey, S. The categoricity spectrum of large abstract elementary classes. Sel. Math. New Ser. 25, 65 (2019). https://doi.org/10.1007/s00029-019-0511-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0511-x

Keywords

Mathematics Subject Classification

Navigation