Skip to main content
Log in

Cosets of Bershadsky–Polyakov algebras and rational \({\mathcal W}\)-algebras of type A

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The Bershadsky–Polyakov algebra is the \({\mathcal W}\)-algebra associated to \({\mathfrak s}{\mathfrak l}_3\) with its minimal nilpotent element \(f_{\theta }\). For notational convenience we define \({\mathcal W}^{\ell } = {\mathcal W}^{\ell - 3/2} ({\mathfrak s}{\mathfrak l}_3, f_{\theta })\). The simple quotient of \({\mathcal W}^{\ell }\) is denoted by \({\mathcal W}_{\ell }\), and for \(\ell \) a positive integer, \({\mathcal W}_{\ell }\) is known to be \(C_2\)-cofinite and rational. We prove that for all positive integers \(\ell \), \({\mathcal W}_{\ell }\) contains a rank one lattice vertex algebra \(V_L\), and that the coset \({\mathcal C}_{\ell } = \text {Com}(V_L, {\mathcal W}_{\ell })\) is isomorphic to the principal, rational \({\mathcal W}({\mathfrak s}{\mathfrak l}_{2\ell })\)-algebra at level \((2\ell +3)/(2\ell +1) -2\ell \). This was conjectured in the physics literature over 20 years ago. As a byproduct, we construct a new family of rational, \(C_2\)-cofinite vertex superalgebras from \({\mathcal W}_{\ell }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afshar, H., Creutzig, T., Grumiller, D., Hikida, Y., Ronne, P.B.: Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry. JHEP 1406, 063 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamovic, D., Milas, A.: On the triplet vertex algebra \({\cal{W}}(p)\). Adv. Math. 217(6), 2664–2699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arakawa, T.: Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture. Duke Math. J. 130(3), 435–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arakawa, T.: Rationality of Bershadsky–Polyalov vertex algebras. Commun. Math. Phys. 323(2), 627–633 (2013)

    Article  MATH  Google Scholar 

  5. Arakawa, T.: Representation theory of W-algebras. Invent. Math. 169(2), 219–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arakawa, T.: Associated varieties of modules over Kac–Moody algebras and \(C_2\)-cofiniteness of \({\cal{W}}\)-algebras. Int. Math. Res. Not. 2015, 11605–11666 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Arakawa, T.: Rationality of \({\cal{W}}\)-algebras: principal nilpotent cases. Ann. Math. 182(2), 565–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arakawa, T., Creutzig, T., Kawasetsu, K., Linshaw, A.: Orbifolds and cosets of minimal \({\cal{W}}\)-algebras. Commun. Math. Phys. (Published online). doi:10.1007/s00220-017-2901-2

  9. Arakawa, T., van Ekeren, J.: Modularity of relatively rational vertex algebras and fusion rules of regular affine \({\cal{W}}\)-algebras. arXiv:1612.09100

  10. Arakawa, T., Lam, C.H., Yamada, H.: Zhu’s algebra, \(C_2\)-algebra and \(C_2\)-cofiniteness of parafermion vertex operator algebras. Adv. Math. 264, 261–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arakawa, T., Moreau, A.: Joseph ideals and lisse minimal W-algebras. J. Inst. Math. Jussieu (published online)

  12. Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 139(1), 71–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blumenhagen, R., Eholzer, W., Honecker, A., Hornfeck, K., Hubel, R.: Unifying \({\cal{W}}\)-Algebras. Phys. Lett. B 332, 51–60 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blumenhagen, R., Eholzer, W., Honecker, A., Hornfeck, K., Hubel, R.: Coset realizations of unifying \(\cal{W}\)-algebras. Int. J. Mod. Phys. Lett. A10, 2367–2430 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Borcherds, R.: Vertex operator algebras, Kac–Moody algebras and the monster. Proc. Nat. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  MATH  Google Scholar 

  16. Carnahan, S.: Building vertex algebras from parts. arXiv:1408.5215

  17. Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator subalgebras. arXiv:1603.05645

  18. Creutzig, T., Hikida, Y., Rønne, P.B.: Higher spin AdS\(_3\) supergravity and its dual CFT. JHEP 1202, 109 (2012)

    Article  MATH  Google Scholar 

  19. Creutzig, T., Kanade, S., Linshaw, A.: Simple current extensions beyond semi-simplicity. arXiv:1511.08754

  20. Creutzig, T., Linshaw, A.: Cosets of affine vertex algebras inside larger structures. arXiv:1407.8512v4

  21. Creutzig, T., Linshaw, A.: Orbifolds of symplectic fermion algebras. Trans. Am. Math. Soc. 369(1), 467–494 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Creutzig, T., Linshaw, A.: The super \(W_{1+\infty }\) algebra with integral central charge. Trans. Am. Math. Soc. 367(8), 5521–5551 (2015)

    Article  MATH  Google Scholar 

  23. Creutzig, T., Ridout, D., Wood, S.: Coset constructions of logarithmic (1, p) models. Lett. Math. Phys. 104(5), 553–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dong, C.: Vertex algebras associated with even lattices. J. Algebra 161(1), 245–265 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dong, C., Mason, G.: Quantum Galois theory for compact Lie groups. J. Algebra 214(1), 92–102 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, C., Li, H., Mason, G.: Regularity of rational vertex operator algebras. Adv. Math. 132(1), 148–166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dong, C., Lam, C.H., Yamada, H.: \({\cal{W}}\)-algebras related to parafermion algebras. J. Algebra 322, 2366–2403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dong, C., Lam, C.H., Wang, Q., Yamada, H.: The structure of parafermion vertex operator algebras. J. Algebra 323(2), 371–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Di Vecchia, P., Petersen, J.L., Yu, M., Zheng, H.B.: Explicit construction of unitary representations of the N = 2 superconformal algebra. Phys. Lett. B 174, 280–284 (1986)

    Article  MathSciNet  Google Scholar 

  30. Dong, C., Ren, L.: Representations of the parafermion vertex operator algebras. arXiv:1411.6085

  31. Dong, C., Wang, Q.: The structure of parafermion vertex operator algebras: general case. Commun. Math. Phys. 299, 783–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dong, C., Wang, Q.: On \(C_2\)-cofiniteness of the parafermion vertex operator algebras. J. Algebra 328, 420–431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dong, C., Wang, Q.: Parafermion vertex operator algebras. Front. Math. China 6(4), 567–579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Feigin, B., Semikhatov, A.: \({\cal{W}}_n^{(2)}\) algebras. Nucl. Phys. B 698(3), 409–449 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Math. Surv. Monogr. Am. Math. Soc. 88 (2001)

  36. Frenkel, E., Kac, V., Wakimoto, M.: Characters and fusion rules for \({\cal{W}}\)-algebras via quantized Drinfeld-Sokolov reduction. Commun. Math. Phys. 147(2), 295–328 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Academic Press, New York (1988)

    MATH  Google Scholar 

  38. Frenkel, I.B., Zhu, Y.C.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gaberdiel, M.R., Gopakumar, R.: An AdS\(_3\) dual for minimal model CFTs. Phys. Rev. D 83, 066007 (2011)

    Article  Google Scholar 

  40. Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset space models. Phys. Lett B 152, 88–93 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Höhn, G.: Genera of vertex operator algebras and three-dimensional topological quantum field theories, Fields Inst. Commun., vol. 39. Amer. Math. Soc., Providence, RI (2003)

  42. Huang, Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7(3), 375–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kawasetsu, K.: \({\cal{W}}\)-algebras with non-admissible levels and the Deligne exceptional series, Int. Math. Res. Notices, rnw240 (2016)

  45. Kac, V.: Vertex Algebras for Beginners, University Lecture Series, vol. 10. American Math. Soc., (1998)

  46. Kac, V., Peterson, D.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kac, V., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2–3), 307–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kac, V., Wakimoto M, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. U.S.A. 85(14), 4956–4960 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kac, V., Wakimoto, M.: On rationality of W-algebras. Transform. Groups 13(3–4), 671–713 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lam, C.H., Lam, N., Yamauchi, H.: Extension of unitary Virasoro vertex operator algebra by a simple module. Int. Math. Res. Not. 11, 577–611 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109(2), 143–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, H.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math. 6, 61–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lian, B., Linshaw, A.: Howe pairs in the theory of vertex algebras. J. Algebra 317, 111–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lian, B., Zuckerman, G.: Commutative quantum operator algebras. J. Pure Appl. Algebra 100(1–3), 117–139 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Miyamoto, M.: \(C_2\)-cofiniteness of cyclic-orbifold models. Comm. Math. Phys. 335, 1279–1286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Miyamoto, M.: Flatness and semi-rigidity of vertex operator algebras. arXiv:1104.4675

  57. Polyakov, A.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A 5(5), 833–842 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tsuchiya, A., Wood, S.: The tensor structure on the representation category of the \(W_{p}\) triplet algebra. J. Phys. A 46, 445203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, W.: Rationality of Virasoro vertex algebras. Int. Math. Res. Not. 7, 197–211 (1993)

  60. Yamauchi, H.: Module categories of simple current extensions of vertex operator algebras. J. Pure Appl. Algebra 189(1–3), 315–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhu, C.-J.: The BRST quantization of the nonlinear \(WB_2\) and \(W_4\) algebras. Nucl. Phys. B 418, 379–399 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhu, Y.: Modular invariants of characters of vertex operators. J. Am. Soc. 9, 237–302 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Linshaw.

Additional information

This work was partially supported by JSPS KAKENHI Grants (#25287004 and #26610006 to T. Arakawa), an NSERC Discovery Grant (#RES0019997 to T. Creutzig), and a grant from the Simons Foundation (#318755 to A. Linshaw).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakawa, T., Creutzig, T. & Linshaw, A.R. Cosets of Bershadsky–Polyakov algebras and rational \({\mathcal W}\)-algebras of type A . Sel. Math. New Ser. 23, 2369–2395 (2017). https://doi.org/10.1007/s00029-017-0340-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0340-8

Keywords

Mathematics Subject Classification

Navigation