Skip to main content
Log in

Generalized Calogero–Moser systems from rational Cherednik algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We consider ideals of polynomials vanishing on the W-orbits of the intersections of mirrors of a finite reflection group W. We determine all such ideals that are invariant under the action of the corresponding rational Cherednik algebra hence form submodules in the polynomial module. We show that a quantum integrable system can be defined for every such ideal for a real reflection group W. This leads to known and new integrable systems of Calogero–Moser type which we explicitly specify. In the case of classical Coxeter groups, we also obtain generalized Calogero–Moser systems with added quadratic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calogero F.: Solution of a three-body problem in one dimension. J. Math. Phys. 10(12), 2191–2196 (1969)

    Article  MathSciNet  Google Scholar 

  2. Calogero F.: Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potential. J. Math. Phys. 12, 419–436 (1971)

    Article  MathSciNet  Google Scholar 

  3. Moser J.: Three integrable Hamiltonian systems connected with isospectral deformation. Adv. Math. 16, 197–220 (1975)

    Article  MATH  Google Scholar 

  4. Olshanetsky M.A., Perelomov A.M.: Quantum completely integrable systems connected with semi-simple Lie algebras. Lett. Math. Phys. 2, 7–13 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heckman G.J.: A remark on the Dunkl differential-difference operators. Prog. Math. 101, 181–191 (1991)

    MathSciNet  Google Scholar 

  6. Dunkl C.F.: Differential-difference operators associated to reflection groups. Trans. AMS 311, 167–183 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Etingof P., Ginzburg V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Etingof, P.: Calogero–Moser systems and representation theory. Zurich Lectures in Advanced Mathematics (2007)

  9. Veselov, A.P., Feigin, M.V., Chalykh, O.A.: New integrable deformations of the quantum Calogero–Moser problem. (Russian) Uspekhi Mat. Nauk 51, 3(309), 185–186 (1996). Translation in Russian Math. Surveys 51(3), 573–574 (1996)

    Google Scholar 

  10. Chalykh O.A., Feigin M.V., Veselov A.P.: New integrable generalisations of Calogero–Moser quantum problem. J. Math. Phys 39(2), 695–703 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chalykh O.A., Feigin M.V., Veselov A.P.: Multidimensional Baker–Akhiezer functions and Huygens’ principle. Commun. Math. Phys. 206, 533–566 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sergeev A.N.: Superanalogs of the Calogero operators and Jack polynomials. J. Nonlinear Math. Phys. 8(1), 59–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sergeev A.N.: Calogero operator and Lie superalgebras. Theor. Math. Phys. 131(3), 747–764 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sergeev A.N., Veselov A.P.: Deformed quantum Calogero–Moser problems and Lie superalgebras. Comm. Math. Phys. 245(2), 249–278 (2002)

    Article  MathSciNet  Google Scholar 

  15. Sergeev A.N., Veselov A.P.: Generalised discriminants, deformed quantum Calogero–Moser system and Jack polynomials. Adv. Math. 192(2), 341–375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sergeev A.N., Veselov A.P.: BC-infinity Calogero–Moser operator and super Jacobi polynomials. Adv. Math. 222(5), 1687–1726 (2009) arXiv:0807.3858

    Article  MathSciNet  MATH  Google Scholar 

  17. Hallnäs M., Langmann E.: A unified construction of generalized classical polynomials associated with operators of Calogero–Sutherland type. Constr. Approx. 31(3), 309–342 (2010) arXiv:math-ph/0703090

    Article  MathSciNet  MATH  Google Scholar 

  18. Hallnäs, M.: A basis for the polynomial eigenfunctions of deformed Calogero–Moser–Sutherland operators. arXiv:0712.1496

  19. Dunkl C.F., de Jeu M.F., Opdam E.M.: Singular polynomials for finite reflection groups. Trans. Am. Math. Soc. 346(1), 237–256 (1994)

    Article  MATH  Google Scholar 

  20. Etingof, P.: Reducibility of the polynomial representation of the degenerate double affine Hecke algebra. arXiv:0706.4308

  21. Cherednik I.: Non-semisimple Macdonald polynomials. Selecta Math. (N.S.) 14(3–4), 427–569 (2009) arXiv:0709.1742

    MathSciNet  MATH  Google Scholar 

  22. Kasatani M.: Subrepresentations in the Polynomial Representation of the Double Affine Hecke Algebra of type GL n at t k+1 q r-1 = 1. Int. Math. Res. Not. 28, 1717–1742 (2005) arXiv:math/0501272

    Article  MathSciNet  Google Scholar 

  23. Kasatani, M.: The polynomial representation of the double affine Hecke algebra of type \({(C^\vee_n, C_n)}\) for specialized parameters. arXiv:0807.2714

  24. Dunkl C.F.: Singular polynomials and modules for the symmetric groups. Int. Math. Res. Notices 39, 2409–2436 (2005)

    Article  MathSciNet  Google Scholar 

  25. Feigin B., Jimbo M., Miwa T., Mukhin E.: A differential ideal of symmetric polynomials spanned by Jack polynomials at β = −(r − 1)/(k + 1). Int. Math. Res. Notices 23, 1223–1237 (2002)

    Article  MathSciNet  Google Scholar 

  26. Feigin B., Jimbo M., Miwa T., Mukhin E.: Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. Int. Math. Res. Notices 18, 1015–1034 (2003)

    Article  MathSciNet  Google Scholar 

  27. Ginzburg V.: On primitive ideals. Selecta Math. (N.S.) 9(3), 379–407 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bezrukavnikov R., Etingof P.: Parabolic induction and restriction functors for rational Cherednik algebras. Selecta Math. (N.S.) 14(3–4), 397–425 (2009) arXiv:0803.3639

    MathSciNet  MATH  Google Scholar 

  29. Polychronakos A.P.: Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69(5), 703–705 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Humphreys J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  31. Bourbaki N.: Lie Groups and Lie Algebras, Chaps. 4–6. Elements of Mathematics. Springer, Berlin (2002)

    Google Scholar 

  32. Rouquier, R.: q-Schur algebras and complex reflection groups. Moscow Math. J. 8(1), 119–158, 184 (2008)

    Google Scholar 

  33. Rühl W., Turbiner A.: Exact solvability of the Calogero and Sutherland models. Modern. Phys. Lett. A 10(29), 2213–2221 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Orlik P., Solomon L.: Coxeter arrangements. Proc. Symp. Pure Math. 40(2), 269–291 (1983)

    MathSciNet  Google Scholar 

  35. Chalykh, O.A.: Private communication

  36. Feigin M., Veselov A.P.: Logarithmic Frobenius structures and Coxeter discriminants. Adv. Math. 212(1), 143–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Brundan J., Goodwin S.M.: Good grading polytopes. Proc. Lond. Math. Soc. 94(3,1), 155–180 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Taniguchi, K.: Deformation of two body quantum Calogero–Moser–Sutherland models. arXiv:math-ph/0607053

  39. Taniguchi K.: On the symmetry of commuting differential operators with singularities along hyperplanes. Int. Math. Res. Notices 36, 1845–1867 (2004)

    Article  Google Scholar 

  40. Gordon, I., Griffeth, S.: Catalan numbers for complex reflection groups. arXiv:0912.1578v1

  41. Dunkl C.F., Opdam E.M.: Dunkl operators for complex reflection groups. Proc. Lond. Math. Soc. 86, 70–108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chalykh O.A.: Bispectrality for the quantum Ruijsenaars model and its integrable deformation. J. Math. Phys. 47, 5139–5167 (2000)

    Article  MathSciNet  Google Scholar 

  43. Feigin M.: Bispectrality for deformed Calogero–Moser–Sutherland systems. J. Nonlin. Math. Phys. 12(sup.2), 95–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Khodarinova L.A.: Quantum integrability of the deformed elliptic Calogero–Moser problem. J. Math. Phys. 46(3), 22 (2005)

    Article  MathSciNet  Google Scholar 

  45. Feigin, M., Silantyev, A.: Generalized Macdonald–Ruijsenaars systems; arXiv:1102.3903

  46. Chalykh O.A., Goncharenko V.M., Veselov A.P.: Multidimensional integrable Schrödinger operators with matrix potential. J. Math. Phys. 40(11), 5341–5355 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Crampe N., Young C.A.S.: Sutherland Models for complex reflection groups. Nucl. Phys. B 797, 499–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Etingof P., Felder G., Ma X., Veselov A.: On elliptic Calogero–Moser systems for complex crystallographic reflection groups. J. Algebra 329, 107–129 (2011) arXiv:1003.4689

    Article  MathSciNet  MATH  Google Scholar 

  49. Enomoto N.: Composition factors of polynomial representation of DAHA and q-decomposition numbers. J. Math. Kyoto Univ. 49(3), 441–473 (2009) arXiv:math/0604368

    MathSciNet  MATH  Google Scholar 

  50. Etingof P., Stoica E.: Unitary representations of rational Cherednik algebras. With an appendix by Stephen Griffeth. Represent. Theory 13, 349–370 (2009) arXiv:0901.4595

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha Feigin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feigin, M. Generalized Calogero–Moser systems from rational Cherednik algebras. Sel. Math. New Ser. 18, 253–281 (2012). https://doi.org/10.1007/s00029-011-0074-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-011-0074-y

Keywords

Mathematics Subject Classification (2010)

Navigation