Skip to main content
Log in

A Unified Construction of Generalized Classical Polynomials Associated with Operators of Calogero–Sutherland Type

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper we consider a large class of many-variable polynomials which contains generalizations of the classical Hermite, Laguerre, Jacobi and Bessel polynomials as special cases, and which occur as the polynomial part in the eigenfunctions of Calogero–Sutherland type operators and their deformations recently found and studied by Chalykh, Feigin, Sergeev, and Veselov. We present a unified and explicit construction of all these polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Awata, H., Matsuo, Y., Odake, S., Shiraishi, J.: Excited states of the Calogero–Sutherland model and singular vectors of the W N algebra. Nucl. Phys. B 449, 347–374 (1995)

    Article  MathSciNet  Google Scholar 

  3. Baker, T.H., Forrester, P.J.: The Calogero–Sutherland model and generalized classical polynomials. Commun. Math. Phys. 188, 175–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boreskov, K.G., Turbiner, A.V., Lopez Vieyra, J.C.: Solvability of the Hamiltonians related to exceptional root spaces: rational case. Commun. Math. Phys. 260, 17–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brink, L., Hansson, T.H., Vasiliev, M.A.: Explicit solution to the N-body Calogero problem. Phys. Lett. B 286, 109–111 (1992)

    Article  MathSciNet  Google Scholar 

  6. Calogero, F.: Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  MathSciNet  Google Scholar 

  7. Chalykh, O., Feigin, M., Veselov, A.: New integrable generalizations of Calogero–Moser quantum problems. J. Math. Phys. 39, 695–703 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Desrosiers, P., Lapointe, L., Mathieu, P.: Explicit formulas for the generalized Hermite polynomials in superspace. J. Phys. A, Math. Gen. 37, 1251–1268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Forrester, P.J.: Some multidimensional integrals related to many-body systems with the 1/r 2 potential. J. Phys. A, Math. Gen. 25, L607–L614 (1992)

    Article  MathSciNet  Google Scholar 

  11. Gaudin, M.: Conjugasion λ λ −1 de l’hamiltonien de Calogero–Sutherland. Saclay Preprint SPhT/92-158 (1992)

  12. Gómez-Ullate, D., González-López, A., Rodríguez, M.A.: New algebraic quantum many-body problems. J. Phys. A, Math. Gen. 33, 7305–7335 (2000)

    Article  MATH  Google Scholar 

  13. González-López, A., Kamran, N., Olver, P.J.: New quasi-exactly solvable Hamiltonians in two dimensions. Commun. Math. Phys. 159, 503–537 (1994)

    Article  MATH  Google Scholar 

  14. Grosswald, E.: Bessel Polynomials. Lecture Notes in Mathematics, vol. 698. Springer, Berlin (1978)

    MATH  Google Scholar 

  15. Hallnäs, M.: An explicit formula for symmetric polynomials related to the eigenfunctions of Calogero–Sutherland models. SIGMA 3, 037 (2007) (17 pages)

    Google Scholar 

  16. Hallnäs, M.: A basis for the polynomial eigenfunctions of deformed Calogero–Moser–Sutherland operators. arXiv:0712.1496

  17. Hallnäs, M.: Multivariable Bessel polynomials related to the hyperbolic Sutherland model with external Morse potential. arXiv:0807.4740

  18. Hallnäs, M., Langmann, E.: Explicit formulas for the eigenfunctions of the N-body Calogero model. J. Phys. A, Math. Gen. 39, 3511–3533 (2006)

    Article  MATH  Google Scholar 

  19. Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Compos. Math. 64, 329–352 (1987)

    MATH  MathSciNet  Google Scholar 

  20. Inozemtsev, V.I., Meshcheryakov, D.V.: The discrete spectrum states of finite-dimensional quantum systems connected with Lie algebras. Phys. Scr. 33, 99–104 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jacobi, C.G.: De functionibus alternantibus. Crelle’s J. 22, 360–371 (1841)

    MATH  Google Scholar 

  22. Kakei, S.: Common algebraic structures for the Calogero–Sutherland models. J. Phys. A, Math. Gen. 29, 619–624 (1996)

    Article  MathSciNet  Google Scholar 

  23. Kakei, S.: An orthogonal basis for the B n -type Calogero model. J. Phys. A, Math. Gen. 30, 535–541 (1997)

    Article  MathSciNet  Google Scholar 

  24. Knop, F., Sahi, S.: A recursion and a combinatorial formula for Jack polynomials. Invent. Math. 128, 9–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Krall, H.L., Frink, O.: A new class of orthogonal polynomials: the Bessel polynomials. Trans. Am. Math. Soc. 65, 100–115 (1949)

    Article  MathSciNet  Google Scholar 

  26. Kuznetsov, V.B., Sklyanin, E.K.: On Bäcklund transformations for many-body systems. J. Phys. A, Math. Gen. 31, 2241–2251 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kuznetsov, V.B., Mangazeev, V.V., Sklyanin, E.K.: Q-operator and factorised separation chain for Jack polynomials. Indag. Math. 14, 451–482 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Langmann, E.: Algorithms to solve the Sutherland model. J. Math. Phys. 42, 4148 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Langmann, E.: A method to derive explicit formulas for an elliptic generalization of the Jack polynomials. In: Kuznetsov, V.B., Sahi, S. (eds.) Jack, Hall-Littlewood and Macdonald Polynomials. Contemporary Mathematics, vol. 417. American Mathematical Society, Providence (2006)

    Google Scholar 

  30. Lapointe, L., Vinet, L.: Exact operator solution of the Calogero–Sutherland model. Commun. Math. Phys. 178(2), 425–452 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lassalle, M.: Polynômes de Jacobi généralisés. C. R. Acad. Sci. Paris 312, 425–428 (1991)

    MATH  MathSciNet  Google Scholar 

  32. Lassalle, M.: Polynômes de Laguerre généralisés. C. R. Acad. Sci. Paris 312, 725–728 (1991)

    MATH  MathSciNet  Google Scholar 

  33. Lassalle, M.: Polynômes de Hermite généralisés. C. R. Acad. Sci. Paris 313, 579–582 (1991)

    MATH  MathSciNet  Google Scholar 

  34. Lassalle, M.: A short proof of generalized Jacobi–Trudi expansions for Macdonald polynomials. In: Kuznetsov, V.B., Sahi, S. (eds.) Jack, Hall-Littlewood and Macdonald Polynomials. Contemporary Mathematics, vol. 417. American Mathematical Society, Providence (2006)

    Google Scholar 

  35. Lassalle, M., Schlosser, M.: Inversion of the Pieri formula for Macdonald polynomials. Adv. Math. 202, 289–325 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Macdonald, I.G.: Hypergeometric functions, unpublished manuscript

  37. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Science Publications, Oxford (1995)

    MATH  Google Scholar 

  38. Mimachi, K., Yamada, Y.: Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials. Commun. Math. Phys. 174, 447–455 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Okounkov, A., Olshanski, G.: Shifted Jack polynomials, binomial formula, and applications. Math. Res. Lett. 4, 69–78 (1997)

    MATH  MathSciNet  Google Scholar 

  40. Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Rep. 94, 314–404 (1983)

    Article  MathSciNet  Google Scholar 

  41. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  42. Sen, D.: A multispecies Calogero–Sutherland model. Nucl. Phys. B 479, 554–574 (1996)

    Article  MATH  Google Scholar 

  43. Serban, D.: Some properties of the Calogero–Sutherland model with reflections. J. Phys. A, Math. Gen. 30, 4215–4225 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sergeev, A.N.: Calogero operator and Lie superalgebras. Theor. Math. Phys. 131, 747–764 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sergeev, A.N., Veselov, A.: Deformed quantum Calogero–Moser systems and Lie superalgebras. Commun. Math. Phys. 245, 249–278 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Sergeev, A.N., Veselov, A.: Generalized discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Adv. Math. 192, 341–375 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Stanley, R.P.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76–115 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  48. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A 4, 2019–2021 (1971)

    Article  Google Scholar 

  49. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. II. Phys. Rev. A 5, 1372–1376 (1972)

    Article  Google Scholar 

  50. Ujino, H., Wadati, M.: Orthogonal symmetric polynomials associated with the quantum Calogero model. J. Phys. Soc. Jpn. 64, 2703–2706 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  51. Ujino, H., Wadati, M.: Algebraic construction of the eigenstates for the second conserved operator of the quantum Calogero model. J. Phys. Soc. Jpn. 65, 653–656 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  52. van Diejen, J.F.: Confluent hypergeometric orthogonal polynomials related to the rational Calogero system with harmonic confinement. Commun. Math. Phys. 188, 467–497 (1997)

    Article  MATH  Google Scholar 

  53. van Diejen, J.F., Lapointe, L., Morse, J.: Determinantal construction of orthogonal polynomials associated with root systems. Compos. Math. 140(2), 255–273 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  54. Wojciechowski, S.: The analogue of the Bäcklund transformation for integrable many-body systems. J. Phys. A, Math. Gen. 15, L653–L657 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hallnäs.

Additional information

Communicated by Erik Koelink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallnäs, M., Langmann, E. A Unified Construction of Generalized Classical Polynomials Associated with Operators of Calogero–Sutherland Type. Constr Approx 31, 309–342 (2010). https://doi.org/10.1007/s00365-009-9060-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-009-9060-4

Keywords

Mathematics Subject Classification (2000)

Navigation