Skip to main content
Log in

Poisson brackets and symplectic invariants

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce new invariants associated with collections of compact subsets of a symplectic manifold. They are defined through an elementary-looking variational problem involving Poisson brackets. The proof of the non-triviality of these invariants involves various flavors of Floer theory, including the μ 3-operation in Donaldson-Fukaya category. We present applications to approximation theory on symplectic manifolds and to Hamiltonian dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akveld M., Salamon D.: Loops of Lagrangian submanifolds and pseudo-holomorphic discs. Geom. Funct. Anal. 11, 609–650 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers P., Frauenfelder U.: Floer homology for negative line bundles and Reeb chords in prequantization spaces. J. Mod. Dyn. 3, 407–456 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amorim, L.: PhD thesis, University of Wisconsin at Madison, in progress

  4. Audin, M., Lalonde, F., Polterovich, L.: Symplectic rigidity: Lagrangian submanifolds. In: Audin, M., Lafontaine, J. (eds.), Holomorphic curves in symplectic geometry, Program Math, vol. 117, pp. 271–321. Birkhaüser, Basel (1994)

  5. Bernard P.: The dynamics of pseudographs in convex Hamiltonian systems. J. Am. Math. Soc. 21, 615–669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biran P., Cornea O.: Rigidity and uniruling for Lagrangian submanifolds. Geom. Topol. 13, 2881–2989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biran P., Polterovich L., Salamon D.: Propagation in Hamiltonian dynamics and relative symplectic homology. Duke Math. J. 119, 65–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgeois F., Eliashberg Y., Hofer H., Wysocki K., Zehnder E.: Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buhovsky L.: The 2/3-convergence rate for the Poisson bracket. Geom. Funct. Anal. 19, 1620–1649 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardin F., Viterbo C.: Commuting Hamiltonians and Hamilton-Jacobi multi-time equations. Duke Math. J. 144, 235–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Silva, V.: Products in the symplectic Floer homology of Lagrangian intersections. PhD thesis, Oxford (1998)

  12. Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. Special Volume, Part II, 560–673 (2000)

  13. Entov M., Polterovich L.: Quasi-states and symplectic intersections. Commun. Math. Helv. 81, 75–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Entov, M., Polterovich, L.: Symplectic quasi-states and semi-simplicity of quantum homology. In: Harada, M., Karshon, Y., Masuda, M., Panov, T. (eds.) Toric Topology. Contemporary Mathematics, vol. 460, pp. 47–70. AMS, Providence, RI (2008)

  15. Entov M., Polterovich L.: Rigid subsets of symplectic manifolds. Compositio Mathematica 145, 773–826 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Entov, M., Polterovich, L.: C 0-rigidity of Poisson brackets. In: Fathi, A. Oh, Y.-G., Viterbo, C. (eds.) Proceedings of the Joint Summer Research Conference on Symplectic Topology and Measure-Preserving Dynamical Systems. Contemporary Mathematics vol. 512, pp. 25–32. AMS, Providence, RI (2010)

  17. Entov, M., Polterovich, L.: C 0-rigidity of the double Poisson bracket. Int. Math. Res. Notices. vol 2009, pp. 1134–1158 (2009)

  18. Entov M., Polterovich L., Rosen D.: Poisson brackets, quasi-states and symplectic integrators. Discrete Continuous Dyn. Syst. 28, 1455–1468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Entov M., Polterovich L., Zapolsky F.: Quasi-morphisms and the Poisson bracket. Pure Appl. Math. Q. 3, 1037–1055 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Floer A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41, 775–813 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Floer A.: Morse theory for Lagrangian intersections. J. Diff. Geom. 28, 513–547 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Fukaya K., Oh Y.-G.: Zero-loop open strings in the cotangent bundle and Morse homotopy. Asian J. Math. 1, 96–180 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Parts I, II. AMS, Providence, RI; International Press, Somerville, MA (2009)

  24. Gatien D., Lalonde F.: Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics. Duke Math. J. 102, 485–511 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gromov M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hastings M.B.: Making almost commuting matrices commute. Commun. Math. Phys. 291, 321–345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hofer, H., Zehnder, E.: A new capacity for symplectic manifolds. In: Analysis, et cetera, pp. 405–427. Academic Press, Boston, MA (1990)

  28. Ivancevic V.G., Ivancevic T.T.: Applied differential geometry. A modern introduction. World Scientific, Hackensack (2007)

    Book  MATH  Google Scholar 

  29. Kaloshin V., Levi M.: An example of Arnold diffusion for near-integrable Hamiltonians. Bull. Am. Math. Soc. (N.S.) 45, 409–427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Loday, J.-L.: The diagonal of the Stasheff polytope. In: Higher structures in geometry and physics, pp. 269–292. Birkhaüser, Boston (2011)

  31. Merry, W.: Lagrangian Rabinowitz Floer homology and twisted cotangent bundles, preprint, arXiv:1010.4190 (2010)

  32. Moser J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 288–294 (1965)

    Article  Google Scholar 

  33. Nijmeijer H., van der Schaft A.: Nonlinear dynamical control systems. Springer, New York (1990)

    MATH  Google Scholar 

  34. Ostrover Y.: Calabi quasi-morphisms for some non-monotone symplectic manifolds. Algebr. Geom. Topol. 6, 405–434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pearcy C., Shields A.: Almost commuting matrices. J. Funct. Anal. 33, 332–338 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F.: The Mathematical Theory of Optimal Processes, A Pergamon Press Book. The Macmillan Co., New York (1964)

    Google Scholar 

  37. Seidel P.: A long exact sequence for symplectic Floer cohomology. Topology 42, 1003–1063 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Seidel P.: Fukaya Categories and Picard-Lefschetz Theory. European Mathematical Society (EMS), Zürich (2008)

    Book  MATH  Google Scholar 

  39. Smith, I.: Floer cohomology and pencils of quadrics. Preprint, arXiv:1006.1099, version 1, 2010

  40. Smith, I.: Private communication, July 2010

  41. Usher M.: Duality in filtered Floer-Novikov complexes. J. Topol. Anal. 2, 233–258 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Usher M.: Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms. Geom. Topol. 15, 1313–1417 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Viterbo C.: Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens. Bull. Soc. Math. France 115, 361–390 (1987)

    MathSciNet  MATH  Google Scholar 

  44. Zapolsky F.: Quasi-states and the Poisson bracket on surfaces. J. Modern Dyn. 1, 465–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zapolsky F.: On almost Poisson commutativity in dimension two. Electron. Res. Announc. Math. Sci. 17, 155–160 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Entov.

Additional information

Lev Buhovsky—also uses the spelling “Buhovski” for his family name.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhovsky, L., Entov, M. & Polterovich, L. Poisson brackets and symplectic invariants. Sel. Math. New Ser. 18, 89–157 (2012). https://doi.org/10.1007/s00029-011-0068-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-011-0068-9

Keywords

Mathematics Subject Classification (2000)

Navigation