Skip to main content
Log in

The Weil-étale fundamental group of a number field II

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We define the fundamental group underlying the Weil-étale cohomology of number rings. To this aim, we define the Weil-étale topos as a refinement of the Weil-étale sites introduced by Lichtenbaum (Ann Math 170(2):657–683, 2009). We show that the (small) Weil-étale topos of a smooth projective curve defined in this paper is equivalent to the natural definition. Then we compute the Weil-étale fundamental group of an open subscheme of the spectrum of a number ring. Our fundamental group is a projective system of locally compact topological groups, which represents first degree cohomology with coefficients in locally compact abelian groups. We apply this result to compute the Weil-étale cohomology in low degrees and to prove that the Weil-étale topos of a number ring satisfies the expected properties of the conjectural Lichtenbaum topos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunge, M.: Classifying topoi and fundamental localic groupoids. Category theory 1991 (Montreal, PQ, 1991). In: CMS Conference Proceedings, vol. 13, pp. 75–96. American Mathematical Society, Providence (1992)

  2. Bunge M., Moerdijk I.: On the construction of the Grothendieck fundamental group of a topos by paths. J. Pure Appl. Algebra 116(1-3), 99–113 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Flach M.: Cohomology of topological groups with applications to the Weil group. Compos. Math. 144(3), 633–656 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Flach, M., Morin, B.: On the Weil-étale topos of regular arithmetic schemes. Preprint (2010)

  5. Grothendieck, A., Artin, M., Verdier, J.L.: Théorie des Topos et cohomologie étale des schémas (SGA4). In: Lectures Notes in Mathematics, vols. 269, 270, 305. Springer (1972)

  6. Johnstone, P.T.: Sketches of an elephant: a topos theory compendium. In: Vol. 1, 2. Oxford Logic Guides, 43. The Clarendon Press, Oxford University Press, New York (2002)

  7. Lichtenbaum S.: The Weil-étale topology on schemes over finite fields. Compos. Math. 141(3), 689–702 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lichtenbaum S.: The Weil-étale topology for number rings. Ann. Math. 170(2), 657–683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Moerdijk I.: Prodiscrete groups and Galois toposes. Nederl. Akad. Wetensch. Indag. Math. 51(2), 219–234 (1989)

    MATH  MathSciNet  Google Scholar 

  10. Morin, B.: Sur le topos Weil-étale d’un corps de nombres. Thesis (2008)

  11. Morin, B.: On the Weil-étale cohomology of number fields. Trans. Am. Math. Soc. (to appear)

  12. Morin, B.: The Weil-étale fundamental group of a number field I. Kyushu J. Math. 65 (2011, to appear)

  13. Mostert P.S.: Sections in principal fibre spaces. Duke Math. J. 23, 57–71 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  14. Neukirch J., Schmidt A., Wingberg K.: Cohomology of Number Fields. 2nd edn. Grundlehren der Mathematischen Wissenschaften, 323. Springer, Berlin (2008)

    Google Scholar 

  15. Tate, J.: Number theoretic background. Automorphic forms, representations and L-functions. In: Proceedings of Symposium on Pure Mathematics. Oregon State University, Corvallis, 1977, Part 2, 3–26, Proceedings of Symposium on Pure Mathematics, vol. XXXIII. American Mathematical Society, Providence (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Morin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, B. The Weil-étale fundamental group of a number field II. Sel. Math. New Ser. 17, 67–137 (2011). https://doi.org/10.1007/s00029-010-0041-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-010-0041-z

Keywords

Mathematics Subject Classification (2010)

Navigation