Skip to main content
Log in

Sharp ill-posedness for the Hunter–Saxton equation on the line

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

The purpose of this paper is to give an exact division for the well-posedness and ill-posedness (non-existence) of the Hunter–Saxton equation on the line. Since the force term is not bounded in the classical Besov spaces (even in the classical Sobolev spaces), a new mixed space \(\mathcal {B}\) is constructed to overcome this difficulty. More precisely, if the initial data \(u_0\in \mathcal {B}\cap \dot{H}^{1}(\mathbb {R}),\) the local well-posedness of the Cauchy problem for the Hunter–Saxton equation is established in this space. Contrariwise, if \(u_0\in \mathcal {B}\) but \(u_0\notin \dot{H}^{1}(\mathbb {R}),\) the norm inflation and hence the ill-posedness is presented. It’s worth noting that this norm inflation occurs in the low frequency part, which exactly leads to a non-existence result. Moreover, the above result clarifies a corollary with physical significance such that all the smooth solutions in \(L^{\infty }(0,T;L^{\infty }(\mathbb {R}))\) must have the \(\dot{H}^1\) norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. H. Bahouri, J. Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.

  2. R. Beals, D. H. Sattinger, and J. Szmigielski. Inverse scattering solutions of the Hunter-Saxton equation. Appl. Anal., 78(3-4):255–269, 2001.

    Article  MathSciNet  Google Scholar 

  3. A. Bressan and A. Constantin. Global solutions of the Hunter-Saxton equation. SIAM J. Math. Anal., 37(3):996–1026, 2005.

    Article  MathSciNet  Google Scholar 

  4. A. Bressan and A. Constantin. Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal., 183(2):215–239, 2007.

    Article  MathSciNet  Google Scholar 

  5. A. Bressan and A. Constantin. Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. (Singap.), 5(1):1–27, 2007.

    Article  MathSciNet  Google Scholar 

  6. R. Camassa and D. D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71(11):1661–1664, 1993.

    Article  MathSciNet  Google Scholar 

  7. A. Constantin. The Hamiltonian structure of the Camassa–Holm equation. Exposition. Math., 15(1):53–85, 1997.

    MathSciNet  Google Scholar 

  8. A. Constantin. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble), 50(2):321–362, 2000.

    Article  MathSciNet  Google Scholar 

  9. A. Constantin and J. Escher. Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(2):303–328, 1998.

  10. A. Constantin and J. Escher. Global weak solutions for a shallow water equation. Indiana Univ. Math. J., 47(4):1527–1545, 1998.

    Article  MathSciNet  Google Scholar 

  11. A. Constantin and J. Escher. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math., 181(2):229–243, 1998.

    Article  MathSciNet  Google Scholar 

  12. A. Constantin and J. Escher. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math., 51(5):475–504, 1998.

    Article  MathSciNet  Google Scholar 

  13. A. Constantin, V. S. Gerdjikov, and R. I. Ivanov. Inverse scattering transform for the Camassa–Holm equation. Inverse Problems, 22(6):2197–2207, 2006.

    Article  MathSciNet  Google Scholar 

  14. A. Constantin and H. P. McKean. A shallow water equation on the circle. Commun. Pure Appl. Math., 52(8):949–982, 1999.

    Article  MathSciNet  Google Scholar 

  15. A. Constantin and L. Molinet. Global weak solutions for a shallow water equation. Commun. Math. Phys., 211(1):45–61, 2000.

    Article  MathSciNet  Google Scholar 

  16. R. Danchin. A note on well-posedness for Camassa–Holm equation. J. Differ. Equ., 192(2):429–444, 2003.

    Article  MathSciNet  Google Scholar 

  17. B. Fuchssteiner and A. S. Fokas. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D, 4(1):47–66, 1981/82.

  18. Z. Guo, X. Liu, L. Molinet, and Z. Yin. Ill-posedness of the Camassa–Holm and related equations in the critical space. J. Differ. Equ., 266(2-3):1698–1707, 2019.

    Article  MathSciNet  Google Scholar 

  19. H. Holden, K. H. Karlsen, and N. H. Risebro. Convergent difference schemes for the Hunter–Saxton equation. Math. Comput., 76(258):699–744, 2007.

    Article  MathSciNet  Google Scholar 

  20. H. Holden and X. Raynaud. Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view. Commun. Partial Differ. Equ., 32(10-12):1511–1549, 2007.

    Article  MathSciNet  Google Scholar 

  21. H. Holden and X. Raynaud. Periodic conservative solutions of the Camassa–Holm equation. Ann. Inst. Fourier (Grenoble), 58(3):945–988, 2008.

    Article  MathSciNet  Google Scholar 

  22. J. K. Hunter and R. Saxton. Dynamics of director fields. SIAM J. Appl. Math., 51(6):1498–1521, 1991.

    Article  MathSciNet  Google Scholar 

  23. J. K. Hunter and Y. Zheng. On a completely integrable nonlinear hyperbolic variational equation. Physica D, 79(2-4):361–386, 1994.

    Article  MathSciNet  Google Scholar 

  24. J. K. Hunter and Y. Zheng. On a nonlinear hyperbolic variational equation. I. Global existence of weak solutions. Arch. Ration. Mech. Anal., 129(4):305–353, 1995.

  25. J. Li and Z. Yin. Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. J. Differ. Equ., 261(11):6125–6143, 2016.

    Article  MathSciNet  Google Scholar 

  26. P. J. Olver and P. Rosenau. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E (3), 53(2):1900–1906, 1996.

  27. Z. Xin and P. Zhang. On the weak solutions to a shallow water equation. Commun. Pure Appl. Math., 53(11):1411–1433, 2000.

    Article  MathSciNet  Google Scholar 

  28. W. Ye, W. Luo, and Z. Yin. The estimate of lifespan and local well-posedness for the non-resistive MHD equations in homogeneous Besov spaces. arXiv:2012.03489v1, 2020.

  29. W. Ye and Z. Yin. Global existence and blow-up phenomena for the Hunter–Saxton equation on the line. J. Math. Fluid Mech., 24(1):25, 2022.

    Article  MathSciNet  Google Scholar 

  30. Z. Yin. On the structure of solutions to the periodic Hunter–Saxton equation. SIAM J. Math. Anal., 36(1):272–283, 2004.

    Article  MathSciNet  Google Scholar 

  31. P. Zhang and Y. Zheng. On oscillations of an asymptotic equation of a nonlinear variational wave equation. Asymptot. Anal., 18(3-4):307–327, 1998.

    MathSciNet  Google Scholar 

  32. P. Zhang and Y. Zheng. On the existence and uniqueness of solutions to an asymptotic equation of a variational wave equation. Acta Math. Sin. (Engl. Ser.), 15(1):115–130, 1999.

  33. P. Zhang and Y. Zheng. Existence and uniqueness of solutions of an asymptotic equation arising from a variational wave equation with general data. Arch. Ration. Mech. Anal., 155(1):49–83, 2000.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Guo was supported by the National Natural Science Foundation of China (No. 12301298, No. 12161004). Ye was supported by the National Natural Science Foundation of China (No. 12271051, No. 12371095), the general project of NSF of Guangdong province (No. 2021A1515010296). Yin was partially supported by the National Natural Science Foundation of China (No. 12171493), the Macao Science and Technology Development Fund (No. 0091/2018/A3), Guangdong Province of China Special Support Program (No. 8-2015) and the key project of the Natural Science Foundation of Guangdong Province (No. 2016A030311004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikui Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Ye, W. & Yin, Z. Sharp ill-posedness for the Hunter–Saxton equation on the line. J. Evol. Equ. 24, 31 (2024). https://doi.org/10.1007/s00028-024-00962-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-024-00962-x

Keywords

Mathematics Subject Classification

Navigation