Skip to main content
Log in

Well-posedness and asynchronous exponential growth of an age-weighted structured fish population model with diffusion in \(L^1\)

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In the present paper, we address the asymptotic behavior of a fish population system structured in age and weight, while also incorporating spatial effects. Initially, we develop an abstract perturbation result concerning the essential spectral radius, employing the regular systems approach. Following that, we present the model in the form of a perturbed boundary problem, which involves unbounded operators on the boundary. Using time-invariant regular techniques, we construct the corresponding semigroup solution. Then, we designate an operator characteristic equation of the primary system via the radius of a bounded linear operator defined on the boundary space. Moreover, we provide a characterization of the uniform exponential stability and the asynchronous exponential growth property (AEG) by localizing the essential radius and proving the irreducibility of the perturbed semigroup. Finally, we precise the projection that emerged from the (AEG) property; this depends on the developed characteristic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. W. Arendt and J. Glück, Positive irreducible semigroups and their long-time behaviour. Philosophical Transactions of the Royal Society A, 378 (2020), 611-627. https://doi.org/10.1098/rsta.2019.0611

    Article  MathSciNet  Google Scholar 

  2. A. Batkai, M. K. FijavŽ, and A. Rhandi, Positive Operator Semigroups: From Finite to Infinite Dimensions, Birkhauser-Verlag, Basel, 2017. https://doi.org/10.1007/978-3-319-42813-0

    Article  Google Scholar 

  3. S. Boujijane, S. Boulite, M, Halloumi, L. Maniar, Well-posedness and asynchronous exponential growth of an age-weight structured fish population model with nonautonomous past. Semigroup Forum, 105 (2022), 117-148. https://doi.org/10.1007/s00233-022-10300-7

    Article  MathSciNet  Google Scholar 

  4. A. Boulouz, H. Bounit, A. Driouich, S. Hadd, On norm continuity, differentiability and compactness of perturbed semigroups. Semigroup Forum, 101 (2020), 547-570. https://doi.org/10.1007/s00233-020-10138-x

    Article  MathSciNet  Google Scholar 

  5. A. Boulouz, A spatially and size-structured population model with unbounded birth process, Disc. Cont. Dyn. Sys.-B, 27(12), (2022), 7169-7183. https://doi.org/10.3934/dcdsb.2022038

    Article  MathSciNet  Google Scholar 

  6. A. Boulouz, H. Bounit, and S. Hadd. Feedback theory approach to positivity and stability of evolution equations, Systems & Control Letters 161, (2022), 105-167. https://doi.org/10.1016/j.sysconle.2022.105167

    Article  MathSciNet  Google Scholar 

  7. W.L. Chan and B.Z. Guo, On the semigroup for age-dependent population dynamics with spatial diffusion, J. Math. Anal. Appl. 184 (1994), 190-199. https://doi.org/10.1006/jmaa.1994.1193

    Article  MathSciNet  Google Scholar 

  8. W.L. Chan and B.Z. Guo, On the semigroups of age-size dependent population dynamics with spatial diffusion. Manuscripta Math 66 (1990), 161-181. https://doi.org/10.1007/BF02568489

    Article  MathSciNet  Google Scholar 

  9. P. Clément, H. J. A. M. Heijmans, S. Angenent, C.J. van Duijn, and B. De Pagter, One-parameter semigroups. North-Holland, CWI Monographs, 5 (1987), p.312.

    MathSciNet  Google Scholar 

  10. K. J. Engel et al, Maximal Controllability for Boundary Control Problems. Appl. Math. Optim., 62 (2010), 205-227. https://doi.org/10.1007/S00245-010-9101-1

    Article  MathSciNet  Google Scholar 

  11. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, 194 (2000). https://doi.org/10.1007/b97696

  12. G. Fragnelli, A. Idrissi, L. Maniar, The asymptotic behaviour of a population equation with diffusion and delayed birth process. Disc. Cont. Dyn. Sys., 7(4) (2007), 735-754. https://doi.org/10.3934/dcdsb.2007.7.735

    Article  Google Scholar 

  13. J. Goldstein, S. Rosencrans, and G. Sod, Mathematics Applied to Science: In Memoriam Edward D. Conway. Boston: Academic Press, 2014.

  14. G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229.

    MathSciNet  Google Scholar 

  15. M. Gurtin, A system of equations for age-dependent population diffusion, J.Theor. Biol. 40 (1973), 389-392. https://doi.org/10.1016/0022-5193(73)90139-2

    Article  ADS  CAS  PubMed  Google Scholar 

  16. S. Hadd, R. Manzo, A. Rhandi, Unbounded perturbations of the generator domain. Disc. Con. Dyn. Sys., 35(2) (2015), 703-723. https://doi.org/10.3934/dcds.2015.35.703

    Article  MathSciNet  Google Scholar 

  17. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics. Appl. Math. Monographs, Giardini Editori e Stampatori, Pisa, 7 (1994).

  18. H. Kang, S. Ruan Principal spectral theory and asynchronous exponential growth for age-structured models with nonlocal diffusion of Neumann type. Math. Ann. 384 (2022), 1-49. https://doi.org/10.1007/s00208-021-02270-y

  19. I. Marek, Frobenius Theory of Positive Operators: Comparison Theorems and Applications, SIAM Journal on Applied Mathematics, 19(3) (1970), 607-628. http://www.jstor.org/stable/2099270.

  20. Z.D. Mei and J.G. Peng, Dynamic boundary systems with boundary feedback and population system with unbounded birth process. Math. Meth. Appl. Sci., 38(8) (2015), 1642-165. https://doi.org/10.1002/mma.3175

    Article  MathSciNet  Google Scholar 

  21. R. Nagel, The spectrum of unbounded operator matrices with non-diagonal domain. J. Funct. Analysis, 89 (1990), 291-302. https://doi.org/10.1016/0022-1236(90)90096-4

    Article  MathSciNet  Google Scholar 

  22. R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators—Functional Analysis (Proceedings Essen 1991). In: K.D. Bierstedt, A. Pietsch, W.M. Ruess, and D. Vogt, (eds.), Lect. Notes in Pure and Appl. Math., 150 (1994), 51-70.

  23. G. Nickel and A. Rhandi, On the essential spectral radius of semigroups generated by perturbations of Hille-Yosida operators. Tübinger Berichte zur Funktionalanalysis, 4 (1995), 207-220.

    Google Scholar 

  24. S. Piazzera and L. Tonetto, Asynchronous exponential growth for an age-dependent population equation with delayed birth process. J. Evol. Equ., 5 (2005), 61-77. https://doi.org/10.1007/S00028-004-0159-6

    Article  MathSciNet  Google Scholar 

  25. A. Rhandi, A. Positivity and Stability for a Population Equation with Diffusion on \(L^1\), Positivity, 2 (1998), 101-113. https://doi.org/10.1023/A:1009721915101

  26. A. Rhandi and R. Schnaubelt, Asymptotic behavior of a non-autonomous population equation with diffusion in \(L^1\), Disc. Cont. Dyn. Syst., 5 (1999), 663-683. https://doi.org/10.3934/dcds.1999.5.663

    Article  Google Scholar 

  27. F. Räbiger, A. Rhandi, R. Schnaubelt, and J. Voigt, Non-autonomous Miyadera perturbation, Diff. Int. Equ., 13 (2000), 341-368.

    MathSciNet  Google Scholar 

  28. E. Sánchez, Moulay L. Hbid and Rafael Bravo de la Parra, Mathematical analysis of a population model with an age-weight structured two-stage life history: Asymptotic behavior of solutions. J. Evol. Equ., 14 (2014), 603-616. https://doi.org/10.1007/s00028-014-0229-3

  29. O.J. Staffans, Well-Posed Linear Systems (Encyclopedia of Mathematics and its Applications). C.U. Press, 2005. https://doi.org/10.1017/CBO9780511543197

  30. C. Walker, Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations. Monatsh Math, 170 (2013), 481-501. https://doi.org/10.1007/s00605-012-0428-3

    Article  MathSciNet  Google Scholar 

  31. C. Walker, Some results based on maximal regularity regarding population models with age and spatial structure. J Elliptic Parabol Equ., 4 (2018), 69-105. https://doi.org/10.1007/s41808-018-0010-9

    Article  MathSciNet  Google Scholar 

  32. C. Walker, Properties of the Semigroup in \(L_1\) Associated with Age-Structured Diffusive Populations, to appear, Indiana Univ. Math. J.

  33. G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York, 294 (1985).

  34. G.F. Webb, An operator-theoretic formulation of asynchronous exponential growth. Trans. Amer. Math. Sot., 303 (1987), 751-763. https://doi.org/10.1090/S0002-9947-1987-0902796-7

    Article  MathSciNet  Google Scholar 

  35. G.F. Webb, Population Models Structured by Age, Size, and Spatial Position—Structured Population Models in Biology and Epidemiology. In: P. Magal, S. Ruan (eds.) Lecture Notes in Mathematics, pp. 1-49. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78273-5_1

  36. G. Weiss, Admissible observation operators for linear semigroups. Israel J. Math., 65 (1989), 17-43. https://doi.org/10.1007/BF02788172

    Article  MathSciNet  Google Scholar 

  37. G. Weiss, Admissibility of unbounded control operators. SIAM J. Control Optim., 27(3) (1989), 527-545. https://doi.org/10.1137/0327028

    Article  MathSciNet  Google Scholar 

  38. G. Weiss, Regular linear systems with feedback. Math. Control Signals Syst., 7 (1994), 23-57. https://doi.org/10.1007/BF01211484

    Article  MathSciNet  Google Scholar 

  39. D. Yan, X. Fu, Asymptotic analysis a spatially and size-structured population dynamics model with delayed birth process, Comm. Pure Appl. Anal., 15 (2016), 637-655. https://doi.org/10.3934/cpaa.2016.15.637

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our heartfelt gratitude to the anonymous referee for their insightful comments, especially for suggesting a shortened proof of Theorem 13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Boulite.

Ethics declarations

Conflict of interest

There are no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Boujijane is supported by the project I-MAROC ‘Artificial Intelligence/Applied Mathematics, Health/Environment: Simulation for Decision Support’, the R &D MULTITHÉMATIQUE -APR &D2020 program financed by the Moroccan “Département de l’Enseignement Supérieur et de la Recherche Scientifique” (DESRS) and “Fondation OCP” (FOCP).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boujijane, S., Boulite, S., Halloumi, M. et al. Well-posedness and asynchronous exponential growth of an age-weighted structured fish population model with diffusion in \(L^1\). J. Evol. Equ. 24, 14 (2024). https://doi.org/10.1007/s00028-023-00942-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00942-7

Keywords

Mathematics Subject Classification

Navigation