Skip to main content
Log in

A Sobolev space theory for the stochastic partial differential equations with space-time non-local operators

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We deal with the Sobolev space theory for the stochastic partial differential equation (SPDE) driven by Wiener processes

$$\begin{aligned} \partial _{t}^{\alpha }u=\left( \phi (\varDelta ) u +f(u) \right) + \partial _t^\beta \sum _{k=1}^\infty \int _0^t g^k(u)\,dw_s^k, \quad t>0, \,x\in {\mathbb {R}}^d \end{aligned}$$

as well as the SPDE driven by space-time white noise

$$\begin{aligned} \partial ^{\alpha }_{t}u=\phi (\varDelta )u + f(u) + \partial ^{\beta -1}_{t}h(u) {\dot{W}}, \quad t>0,\, x\in {\mathbb {R}}^d. \end{aligned}$$

Here, \(\alpha \in (0,1), \beta < \alpha +1/2\), \(\{w_t^k : k=1,2,\ldots \}\) is a family of independent one-dimensional Wiener processes and \({\dot{W}}\) is a space-time white noise defined on \([0,\infty )\times {\mathbb {R}}^d\). The time non-local operator \(\partial _{t}^{\alpha }\) denotes the Caputo fractional derivative of order \(\alpha \), the function \(\phi \) is a Bernstein function, and the spatial non-local operator \(\phi (\varDelta )\) is the integro-differential operator whose symbol is \(-\phi (|\xi |^2)\). In other words, \(\phi (\varDelta )\) is the infinitesimal generator of the d-dimensional subordinate Brownian motion. We prove the uniqueness and existence results in Sobolev spaces and obtain the maximal regularity results of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Batty, C., Gomilko, A., Tomilov, Y.: Resolvent representations for functions of sectorial operators. Adv. Math. 308, 896–940 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondrac̆ek, Z.: Potential Analysis of Stable Processes and Its Extensions. Springer Science & Business Media, Berlin Heidelberg (2009)

    Book  Google Scholar 

  3. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: stochastic mechanism, models and physical applications. Phys. Rep. 195(4-5), 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Chang, T., Lee, K.: On a stochastic partial differential equation with a fractional Laplacian operator. Stoch. Proc. Appl. 122(9), 3288–3311 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z.Q.: Time fractional equations and probabilistic representation. Chaos, Soliton Fract. 102, 168–174 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z.Q., Meerschaert, M.M., Nane, E.: Space-time fractional diffusion on bounded domains. J. Math. Anal. Appl. 393(2), 479–488 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z.Q., Kim, K., Kim, P.: Fractional time stochastic partial differential equations. Stoch. Proc. Appl. 125(4), 1470–1499 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z.Q., Kim, P., Kumagai, T., Wang, J.: Time fractional Poisson equations: Representations and estimates. J. Funct. Anal. 278(2), 108311 (2020)

    Article  MathSciNet  Google Scholar 

  9. Compte, A.: Stochastic foundations of fractional dynamics. Phys. Rev. E. 53(4), 4191–4193 (1996)

    Article  Google Scholar 

  10. Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for SPDE’s: a comparison. Expo. Math. 29(1), 67–109 (2011)

    Article  MathSciNet  Google Scholar 

  11. Desch, W., Londen, S.-O.: On a stochastic parabolic integral equation. Functional analysis and evolution equations. Birkhäuser, Basel (2007)

  12. Desch, W., Londen, S.-O.: An \(L_p\)-theory for stochastic integral equations. J. Evol. Equ. 11(2), 287–317 (2011)

    Article  MathSciNet  Google Scholar 

  13. Desch, W., Londen, S.-O.: Maximal regularity for stochastic integral equations. J. Appl. Anal. 19(1), 125–140 (2013)

    Article  MathSciNet  Google Scholar 

  14. Farkas, W., Jacob, N., Schilling, R.L.: Function Spaces Related to Continuous Negative Definite Functions: \(\psi \)-Bessel Potential Spaces. Polska Akademia Nauk, Instytut Matematyczny, Warszawa (2001)

  15. Fogedby, H.C.: Lévy flights in random environment. Phys. Rev. Lett. 73(19) (1994)

  16. Gallarati, C., Veraar, M.: Maximal regularity for non-autonomous equations with measurable dependence on time. Potential Anal. 46(3), 527–567 (2017)

    Article  MathSciNet  Google Scholar 

  17. Gorenflo, R., Mainardi, F.: Fractional diffusion processes: probability distribution and continuous time random walk. Lecture Notes in Phys. 621, 148–166 (2003)

    Article  Google Scholar 

  18. Gorenflo, R., Luchko, Y., Mainardi, F.: Analytical properties and applications of the Wright function. Frac. Calc. Appl. Anal. 2(4), 378–414 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Hytönen, T., Van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. Volume II: Probabilistic methods and operator theory (Vol. 67), Springer, Berlin (2018)

  20. Hytönen, T., Van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces (Vol. 12), Springer, Berlin (2016)

    Book  Google Scholar 

  21. Ken-Iti, S.: Lévy Processes and Infinitely Divisible Distributions. Cambridge university press, Cambridge (1999)

    MATH  Google Scholar 

  22. Kim, K., Park, D.: A Sobolev space theory for the time-fractional stochastic partial differential equations driven by Lévy processes. arXiv:2006.05050v3 (2022)

  23. Kim, I., Kim, K.: A generalization of the Littlewood-Paley inequality for the fractional Laplacian \((-\Delta )^{\alpha /2}\). J. Math. Anal. Appl. 338(1), 175–190 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kim, I., Kim, K., Kim, P.: Parabolic Littlewood–Paley inequality for \(\phi (-\varDelta )\)-type operators and applications to stochastic integro-differential equations. Adv. Math. 249, 161–203 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kim, P., Song, R., Vondrac̆ek, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application, Stoch. Proc. Appl. 124(1), 235–267 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kim, I., Kim, K., Lim, S.: A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives. Ann. Probab. 47(4), 2087–2139 (2019)

    Article  MathSciNet  Google Scholar 

  27. Kim, K., Park, D., Ryu, J.: An \(L_{q}(L_{p})\)-theory for diffusion equations with space-time nonlocal operators. J. Differ. Equ. 287(25), 376–427 (2021)

    Article  Google Scholar 

  28. Krylov, N.V.: An analytic approach to spdes. Stochastic partial differential equations: Six perspectives, Mathematical Surveys and Monographs. 64, 185–242. American Mathematical Society, Providence (1999)

  29. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. American Mathematical Society, Providence (2008)

  30. Krylov, N.V.: On \(L_p\)-theory of stochastic partial differential equations. SIAM J. Math. Anal. 27(2), 313–340 (1996)

    Article  MathSciNet  Google Scholar 

  31. Krylov, N.V.: On the Itô-Wentzell formula for distribution-valued processes and related topics. Probab. Theory Relat. Fields 150(1-2), 295–319 (2011)

    Article  Google Scholar 

  32. Liu, W., Röckner, M., da Silva, J.L.: Quasi-linear stochastic partial differential equations with time-fractional derivatives. SIAM J. Math. Anal. 50(3), 2588–2607 (2018)

    Article  MathSciNet  Google Scholar 

  33. Lorist, E., Veraar, M.: Singular stochastic integral operators. Anal. PDE 14(5), 1443–1507 (2021)

    Article  MathSciNet  Google Scholar 

  34. Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Baeumer, B.: Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E. 65(4), 041103 (2002)

    Article  MathSciNet  Google Scholar 

  35. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  36. Metzler, R., Barkai, E., Klafer, J.: Anomalous diffusion and relaxation closed to thermal equilibrium: A fractional Fokker-Plank equation approach. Phys. Rev. Lett. 82(18), 3565–3567 (1999)

    Article  Google Scholar 

  37. Mikulevičius, R., Phonsom, C.: On \({L}^{p}\)-theory for parabolic and elliptic integro-differential equations with scalable operators in the whole space. Stoch. Partial Differ. Equ. 5(4), 472–519 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Mikulevicius, R., Pragarauskas, H.: On Lp-estimates of some singular integrals related to jump processes. SIAM J. Math. Anal. 44(4), 2305–2328 (2012)

    Article  MathSciNet  Google Scholar 

  39. Neervan, J.V., Veraar, M., Weis, L.: Stochastic Maximal \(L^p\)-regularity. Ann. Probab. 40(2), 788–812 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  41. Prüss, J.: Evolutionary integral equations and applications (Vol. 87). Birkhäuser, Basel (2013)

    MATH  Google Scholar 

  42. Schilling, R.L., Song, R., Vondrac̆ek, Z.: Bernstein Functions: Theory and Applications. Walter de Gruyter, Berlin (2012)

    Book  Google Scholar 

  43. Stein, E.M., Murphy, T.S.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    Google Scholar 

  44. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Maximal \(L^p\)-regularity for stochastic evolution equations. SIAM J. Math. Anal. 44(3), 1372–1414 (2012)

  45. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255(4), 940–993 (2008)

  46. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referee for valuable comments and suggestions. We could considerably improve the early version of this article due to the referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhee Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A5A1028324)

Auxiliary results

Auxiliary results

In this section, we obtain some sharp upper bounds of space-time fractional derivatives of the fundamental solution q(tx) related to the equation

$$\begin{aligned} \partial _t^\alpha u = \phi (\varDelta )u ,\quad t>0; \quad u(0,\cdot )=u_0. \end{aligned}$$

First we record some elementary facts on Bernstein functions.

Lemma A.1

Let \(\phi \) be a Bernstein function satisfying Assumption 3.1.

(i) There exists a constant \(c=c(\gamma ,\kappa _0,\delta _0)\) such that for any \(\lambda >0\),

$$\begin{aligned} \int _{\lambda ^{-1}}^\infty r^{-1}\phi (r^{-2}) dr \le c \phi (\lambda ^2). \end{aligned}$$
(A.1)

(ii) For any \(\gamma \in (0,1)\), the function \(\phi ^\gamma :=\left( \phi (\cdot )\right) ^\gamma \) is also a Bernstein function with no drift, and it satisfies Assumption 3.1 with \(\gamma \delta _0\) and \(\kappa _0^{\gamma }\), in place of \(\delta _0\) and \(\kappa _0\), respectively.

(iii) Let \(\mu _\gamma \) be the Lévy measure of \(\phi ^\gamma \) (i.e., \(\phi ^{\gamma }(\lambda )=\int _{(0,\infty )} (1-e^{-\lambda t})\mu _{\gamma }(dt)\)), and set

$$\begin{aligned} j_{\gamma ,d}(r):=\int _0^\infty (4\pi t)^{-d/2} \exp (-r^2/4t)\mu _\gamma (dt), \qquad r>0. \end{aligned}$$
(A.2)

Then

$$\begin{aligned} j_{\gamma ,d} (r) \le c(d) \,r^{-d}\phi (r^{-2})^\gamma , \qquad \forall r>0, \end{aligned}$$
(A.3)

and for any \(f\in C_b^2({\mathbb {R}}^d)\) and \(r>0\), it holds that

$$\begin{aligned} \phi (\varDelta )^\gamma f(\cdot )(x) =&\int _{{\mathbb {R}}^d} \left( f(x+y)-f(x)-\nabla f(x)\cdot y {\mathbf {1}}_{|y|\le r} \right) j_{\gamma ,d} (|y|) dy \end{aligned}$$
(A.4)

Proof

(i) By (3.4) this and the change of variables,

(ii) \(\phi ^\gamma \) is a Bernstein function due to [42, Corollary 3.8 (iii)], and (3.3) easily yields

$$\begin{aligned} \kappa _0^\gamma \left( \frac{R}{r}\right) ^{\gamma \delta _0}\le \frac{\phi (R)^\gamma }{\phi (r)^\gamma }, \qquad 0<r<R<\infty . \end{aligned}$$

If we denote drift of \(\phi ^{\gamma }\) by \(b_{\gamma }\) (see (2.4)), it follows that

$$\begin{aligned} \lim _{\lambda \rightarrow \infty } \frac{\phi (\lambda )}{\lambda }=b, \quad \lim _{\lambda \rightarrow \infty } \frac{\phi (\lambda )^{\gamma }}{\lambda }=b_{\gamma }. \end{aligned}$$

Hence, we have

$$\begin{aligned} b_\gamma =\lim _{\lambda \rightarrow \infty } \frac{\phi (\lambda )^\gamma }{\lambda }=\lim _{\lambda \rightarrow \infty } \left( \frac{\phi (\lambda )}{\lambda }\right) ^\gamma \lambda ^{\gamma -1}=0. \end{aligned}$$

(iii) (A.3) follows from [24, Lemma 3.3] (recall that \(\phi ^{\gamma }\) is a Bernstein function with no drift), and the second assertion is a consequence of (2.7). \(\square \)

Recall that p(tx) is the transition density of the subordinate Brownian motion \(X_t\) with characteristic exponent \(\phi (|\xi |^2)\). Also, for any \(t>0\), and \(x\in {\mathbb {R}}^d\),

$$\begin{aligned} p(t,x)= & {} \frac{1}{(2\pi )^d} \int _{{\mathbb {R}}^d} e^{i \xi \cdot x} e^{-t\phi (|\xi |^2)} \,d\xi \nonumber \\= & {} \int _{(0,\infty )} (4\pi s)^{-d/2} \exp \left( -\frac{|x|^2}{4s}\right) \eta _t (ds) \end{aligned}$$
(A.5)

where \(\eta _t(ds)\) is the distribution of \(S_t\) (see [2, Sect. 5.3.1]). Thus \(X_t\) is rotationally invariant.

Lemma A.2

(i) There exists a constant \(C=C(d,\delta _0,\kappa _0)\) such that for \((t,x)\in (0,\infty )\times {\mathbb {R}}^d\),

$$\begin{aligned} p(t,x)\le C\left( \left( \phi ^{-1}(t^{-1})\right) ^{d/2}\wedge t\frac{\phi (|x|^{-2})}{|x|^d}\right) . \end{aligned}$$

(ii) For any \(m\in {\mathbb {N}}\), there exists a constant \(C=C(d,\delta _0,\kappa _0, m)\) so that for any \((t,x)\in (0,\infty )\times {\mathbb {R}}^d\),

$$\begin{aligned}&|D^m_x p(t,x)| \le C \sum _{m-2n\ge 0,n\in {\mathbb {N}}_0} |x|^{m-2n}\left( (\phi ^{-1}(t^{-1}))^{d/2+m-n}\wedge t\frac{\phi (|x|^{-2})}{|x|^{d+2(m-n)}}\right) . \end{aligned}$$

Proof

See [27, Lemma 3.4, Lemma 3.6]. \(\square \)

The following lemma is an extension of [24, Lemma 4.2]. The main difference is that our estimate holds for all \(t>0\). Such result is needed for us to prove estimates of solutions to SPDEs (see, e.g., (3.2)).

Lemma A.3

Let \(\gamma \in (0,1)\) and \(m\in {\mathbb {N}}_0\). Then for any \((t,x)\in (0,\infty )\times {\mathbb {R}}^d\),

$$\begin{aligned}&|\phi (\varDelta )^\gamma D^m_x p(t,\cdot )(x)| \\&\quad \le C(d,\delta _0, \kappa _0, m, \gamma ) \left( t^{-\gamma }(\phi ^{-1}(t^{-1}))^{(d+m)/2}\wedge \frac{\phi (|x|^{-2})^\gamma }{|x|^{d+m}}\right) . \end{aligned}$$

Proof

Note first that for any given \(a>0\),

$$\begin{aligned} s^{a}e^{-s}\le c(a)e^{-s/2}, \quad \forall s>0. \end{aligned}$$

Also note that by (3.3), if \(a^2 \ge \phi ^{-1}(t^{-1})\), then

$$\begin{aligned} \kappa _0 \left( \frac{a^2}{\phi ^{-1}(t^{-1})}\right) ^{\delta _0} \le \frac{\phi (a^2)}{t^{-1}}=t\phi (a^2). \end{aligned}$$

Therefore, by (A.5),

$$\begin{aligned}&\left| \phi (\varDelta )^\gamma D^{m}_{x} p(t,x)\right| =\left| {\mathcal {F}}^{-1} \left[ {\mathcal {F}}(\phi (\varDelta )^\gamma D^{m}_{x} p(t,\cdot )) (\xi ) \right] (x)\right| \\&\quad \le C\int _{{\mathbb {R}}^d} \left| t^{-\gamma }\left( t\phi (|\xi |^2)\right) ^\gamma e^{-t\phi (|\xi |^2)}\right| |\xi |^{m} d\xi \\&\quad \le Ct^{-\gamma } \left( \int _{|\xi |^2>\phi ^{-1}(t^{-1})} |\xi |^{m} e^{-t\frac{\phi (|\xi |^2)}{2}}d\xi + \int _{|\xi |^2\le \phi ^{-1}(t^{-1})} |\xi |^{m} d\xi \right) \\&\quad \le Ct^{-\gamma }\left( \int _{|\xi |^2>\phi ^{-1}(t^{-1})} |\xi |^{m} e^{-\frac{\kappa _0}{2} \left( \frac{|\xi |^2}{\phi ^{-1}(t^{-1})}\right) ^{\delta _0}}d\xi +\left( \phi ^{-1}(t^{-1})\right) ^{\frac{d+m}{2}} \right) \\&\quad \le C t^{-\gamma }\left( \phi ^{-1}(t^{-1})\right) ^{\frac{d+m}{2}} \left( \int _{|\xi |^2>1} e^{-\frac{\kappa _0}{4}|\xi |^{2\delta _0}} d\xi +1 \right) \\&\quad \le C t^{-\gamma }\left( \phi ^{-1}(t^{-1})\right) ^{\frac{d+m}{2}}. \end{aligned}$$

Hence, to finish the proof, we may assume \(t^{-\gamma }(\phi ^{-1}(t^{-1}))^{\frac{d+m}{2}} \ge \frac{\phi (|x|^{-2})^\gamma }{|x|^{d+m}}\) (equivalently, \(t \phi (|x|^{-2})\le 1\)) and prove

$$\begin{aligned} |\phi (\varDelta )^\gamma D^m_x p(t,\cdot )(x)| \le C \frac{\phi (|x|^{-2})^\gamma }{|x|^{d+m}}. \end{aligned}$$

By (A.4) with \(r=|x|/2\),

$$\begin{aligned}&\left| \phi (\varDelta )^\gamma D^{m}_{x} p(t,\cdot )(x)\right| \\&\quad = \left| \int _{{\mathbb {R}}^d} \left( D^{m}_{x}p(t,x+y)-D^{m}_{x}p(t,x)-\nabla D^{m}_{x}p(t,x)\cdot y {\mathbf {1}}_{|y|\le \frac{|x|}{2}}\right) j_{\gamma ,d} (|y|)dy \right| \\&\quad \le |D^{m}_{x}p(t,x)|\int _{|y|>|x|/2} j_{\gamma ,d} (|y|)dy \\&\qquad + \left| \int _{|y|>|x|/2} D^{m}_{x}p(t,x+y)j_{\gamma ,d} (|y|)dy\right| \\&\qquad + \int _{|x|/2>|y|} \int _0^1 \left| D^{m+1}_{x}p(t,x+sy)- D^{m+1}_{x}p(t,x)\right| |y|j_{\gamma ,d}(|y|) dsdy \\&\quad =: |D^{m}_{x}p(t,x)|\times I + II + III. \end{aligned}$$

By (A.3), (A.1) with \(\phi ^{\gamma }\), and (3.4), we have

$$\begin{aligned} I \le C \int _{r>|x|/2} r^{-1}\phi (r^{-2})^\gamma dr \le C \phi (4|x|^{-2})^{\gamma } \le C \phi (|x|^{-2})^{\gamma }. \end{aligned}$$

This together with Lemma A.2 (ii) yields (recall we assume \(t\phi (|x|^{-2})\le 1\))

$$\begin{aligned} |D^{m}_{x}p(t,x)|\times I \le C t\frac{\phi (|x|^{-2})^{1+\gamma }}{|x|^{d+m}}\le C \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}} . \end{aligned}$$

For III, by the fundamental theorem of calculus and Lemma A.2 (ii),

$$\begin{aligned} III \le&C(d)\int _{|x|/2>|y|} \int _0^1 \int _0^1 \left| D^{m+2}_{x}p(t,x+usy)\right| |y|^2j_{\gamma ,d}(|y|) dudsdy \\ \le&C\int _{|x|/2>|y|} \int _0^1\int _0^1 t\frac{\phi (|x+usy|^{-2})}{|x+usy|^{d+m+2}} |y|^2j_{\gamma ,d}(|y|) dudsdy \\ \le&C t\frac{\phi (|x|^{-2})}{|x|^{d+m+2}}\int _{|x|/2>|y|} |y|^2j_{\gamma ,d}(|y|) dy. \end{aligned}$$

For the last inequality above, we used \(|x+usy|\ge |x|/2\). By (A.3), and (3.4) with \(r=|x|^{-2}\) and \(R=\rho ^{-2}\),

$$\begin{aligned} \int _{|x|/2>|y|} |y|^2j_{\gamma ,d}(|y|)dy \le&C \int _0^{|x|} \rho \phi (\rho ^{-2})^\gamma d\rho \\ \le&C |x|^{2\gamma }\phi (|x|^{-2})^\gamma \int _0^{|x|} \rho ^{1-2\gamma } d\rho \\ \le&C |x|^2 \phi (|x|^{-2})^\gamma . \end{aligned}$$

Therefore, it follows that for \(t \phi (|x|^{-2})\le 1\),

$$\begin{aligned} III\le C t\frac{\phi (|x|^{-2})^{1+\gamma }}{|x|^{d+m}} \le C \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}}. \end{aligned}$$

Now we estimate II. By using the integration by parts m-times, we have

$$\begin{aligned} II&\le \sum _{k=0}^{m-1} \int _{|y|=\frac{|x|}{2}} \left| \left( \frac{d^{k}}{d\rho ^{k}} j_{\gamma ,d}\right) (|y|) D^{m-1-k}_{x}p(t,x+y) \right| dS \\&\quad +\int _{|y|>\frac{|x|}{2}} \left| \left( \frac{d^{m}}{d\rho ^{m}}j_{\gamma ,d}\right) (|y|)p(t,x+y) \right| dy. \end{aligned}$$

Differentiating \(j_{\gamma ,d}(\rho )\), and then using (A.2) and (A.3), for \(k\in {\mathbb {N}}_{0}\) we get

$$\begin{aligned} \left| \frac{d^{k}}{d\rho ^{k}} j_{\gamma ,d}(\rho ) \right| \le C \sum _{k-2l\ge 0,l\in {\mathbb {N}}_{0}} \rho ^{k-2l}|j_{\gamma ,d+2(k-l)}(\rho )| \le C \rho ^{-d-k}\phi (\rho ^{-2})^{\gamma }. \end{aligned}$$

This and Lemma A.2 (ii) yield that

$$\begin{aligned} II&\le C\sum _{k=0}^{m-1} \Big ( |x|^{d-1}|x|^{-d-k} |x|^{-d-m+1+k} t \phi (|x|^{-2})^{\gamma +1} \Big ) + C \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}}\\&\le C \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}}. \end{aligned}$$

for \(t\phi (|x|^{-2})\le 1\). Hence, the lemma is proved. \(\square \)

Below we provide the proof of Lemma 3.2. The proof is mainly based on [27, Lemma 3.7, Lemma 3.8].

Proof of Lemma 3.2

(i) See [27, Lemma 3.7 (iii)].

(ii) See [27, Lemma 3.8] for (3.6) with arbitrary \(\beta \) and for (3.7) when \(\beta \notin {\mathbb {N}}\). Hence, we only prove (3.7) when \(\beta \in {\mathbb {N}}\). Let \(\beta \in {\mathbb {N}}\), then by [27, Lemma 3.8], we have

$$\begin{aligned} |q_{\alpha ,\beta } (t,x)|&\le C \int _{(\phi (|x|^{-2}))^{-1}}^{2t^{\alpha }} (\phi ^{-1}(r^{-1}))^{(d+m)/2} r t^{-\alpha -\beta } dr \\&\le C \int _{(\phi (|x|^{-2}))^{-1}}^{2t^{\alpha }} (\phi ^{-1}(r^{-1}))^{(d+m)/2} t^{-\beta } dr. \end{aligned}$$

For the last inequality, we used \(rt^{-\alpha }\le 2\) whenever \(r\le 2t^{\alpha }\).

(iii) We follow the proof of [27, Lemma 3.8]. By [27, Lemma 3.7], there exist constants \(c,C>0\) depending only on \(\alpha ,\beta \) such that

$$\begin{aligned} |\varphi _{\alpha ,\beta }(t,r)|\le C t^{-\beta }e^{-c(rt^{-\alpha })^{1/(1-\alpha )}} \end{aligned}$$
(A.6)

for \(rt^{-\alpha }\ge 1\), and

$$\begin{aligned} |\varphi _{\alpha ,\beta }(t,r)|\le \left\{ \begin{array}{ll} C rt^{-\alpha -\beta }~&{}:\, \beta \in {\mathbb {N}}\\ C t^{-\beta }~&{}:\, \beta \notin {\mathbb {N}}\end{array} \right. \end{aligned}$$
(A.7)

for \(rt^{-\alpha }\le 1\). Therefore, we have

$$\begin{aligned} \int _0^\infty |\varphi _{\alpha ,\beta }(t,r)|dr<\infty . \end{aligned}$$
(A.8)

Let \(x\in {\mathbb {R}}^d\setminus \{0\}\). Then for any \(r>0\) and \(y\ne 0\) sufficiently close to x, we have

$$\begin{aligned} |\phi (\varDelta )^\gamma D^{\sigma }p(r,y)| \le C(\phi ,x,d,m,\gamma ) , \quad |\sigma |\le m \end{aligned}$$

due to Lemma A.3. Using (A.8) and the dominated convergence theorem, we get

$$\begin{aligned} D^m_x q^\gamma _{\alpha ,\beta } (t,x)=\int _0^\infty \phi (\varDelta )^\gamma D^m_x p(r,x)\varphi _{\alpha ,\beta }(t,r) dr. \end{aligned}$$

Hence, by (A.6) and (A.7) (also recall \(rt^{-\alpha }\le 2\) whenever \(r\le 2t^{\alpha }\)),

$$\begin{aligned} |D^m_x q^\gamma _{\alpha ,\beta } (t,x)|&\le C \int _0^{t^\alpha } |\phi (\varDelta )^\gamma D^m_x p(r,x)|t^{-\beta } dr \nonumber \\&\quad + C \int _{t^\alpha }^\infty |\phi (\varDelta )^\gamma D^m_x p(r,x)| t^{-\beta }e^{-c(rt^{-\alpha })^{1/(1-\alpha )}} dr \nonumber \\&=: I+II. \end{aligned}$$
(A.9)

By Lemma A.3,

$$\begin{aligned} I \le C \int _0^{t^\alpha } t^{-\beta } \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}}dr \le C t^{\alpha -\beta } \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}}. \end{aligned}$$

Also, by the change of variables \(rt^{-\alpha }\rightarrow r\),

$$\begin{aligned} II&\le C t^{-\beta } \int _{t^\alpha }^\infty \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}} e^{-c(rt^{-\alpha })^{1/(1-\alpha )}} dr \\&\le C t^{\alpha -\beta }\frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}} \int _1^\infty e^{-cr^{1/(1-\alpha )}} dr \\&\le C t^{\alpha -\beta }\frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}}. \end{aligned}$$

Hence, (3.8) is proved.

Next we prove (3.9). Assume \(t^\alpha \phi (|x|^{-2})\ge 1\). Again we consider I and II defined in (A.9). For I we have

$$\begin{aligned} I&=t^{-\beta } \int _0^{(\phi (|x|^{-2}))^{-1}}|\phi (\varDelta )^\gamma D^m_x p(r,x)|dr \\&\quad +t^{-\beta } \int _{(\phi (|x|^{-2}))^{-1}}^{t^\alpha }|\phi (\varDelta )^\gamma D^m_x p(r,x)|t^{-\beta } dr \\&=:I_1 + I_2. \end{aligned}$$

By Lemma A.3 (recall that \(t^{\alpha }\phi (|x|^{-2})\ge 1\)),

$$\begin{aligned} I_1&\le C t^{-\beta } \int _0^{(\phi (|x|^{-2}))^{-1}} \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}}dr\\&= C t^{-\beta } \frac{\phi (|x|^{-2})^{\gamma -1}}{|x|^{d+m}} = Ct^{-\beta } \int _{(\phi (|x|^{-2}))^{-1}}^{2(\phi (|x|^{-2}))^{-1}} \frac{\phi (|x|^{-2})^{\gamma }}{|x|^{d+m}} dr \end{aligned}$$

Note that if \(r \le 2(\phi (|x|^{-2}))^{-1}\), then by (3.4)

$$\begin{aligned} |x|^{-2} \le \phi ^{-1}(2r^{-1}) \le \left( \frac{2}{k_0} \right) ^{1/\delta _{0}} \phi ^{-1}(r^{-1}). \end{aligned}$$
(A.10)

Thus, using \(r\le 2(\phi (|x|^{-2}))^{-1}\), we get

$$\begin{aligned} I_1&\le C t^{-\beta }\int _{(\phi (|x|^{-2}))^{-1}}^{2(\phi (|x|^{-2}))^{-1}} (\phi ^{-1}(r^{-1}))^{(d+m)/2} r^{-\gamma } dr \nonumber \\&\le Ct^{-\beta } \int _{(\phi (|x|^{-2}))^{-1}}^{2t^{\alpha }} (\phi ^{-1}(r^{-1}))^{(d+m)/2} r^{-\gamma } dr. \end{aligned}$$

We also get, by Lemma A.3,

$$\begin{aligned} I_2 \le C t^{-\beta } \int _{(\phi (|x|^{-2}))^{-1}}^{2t^{\alpha }} (\phi ^{-1}(r^{-1}))^{(d+m)/2} r^{-\gamma }dr. \end{aligned}$$

Thus, I is handled. Next we estimate II. By (3.4), we find that

$$\begin{aligned} \phi ^{-1}(r^{-1})\le t^\alpha r^{-1} \phi ^{-1}(t^{-\alpha }), \quad t^\alpha \le r. \end{aligned}$$

Therefore, by Lemma A.3 and the change of variables \(rt^{-\alpha }\rightarrow r\),

$$\begin{aligned} II\le & {} Ct^{-\beta } \int _{t^\alpha }^\infty r^{-\gamma }(\phi ^{-1}(r^{-1}))^{(d+m)/2} e^{-c(rt^{-\alpha })^{1/(1-\alpha )}} dr \nonumber \\\le & {} Ct^{-\beta } \int _{t^\alpha }^\infty r^{-\gamma }(t^\alpha r^{-1} \phi ^{-1}(t^{-\alpha }))^{(d+m)/2} e^{-c(rt^{-\alpha })^{1/(1-\alpha )}} dr \nonumber \\= & {} C t^{(1-\gamma )\alpha -\beta } (\phi ^{-1}(t^{-\alpha }))^{(d+m)/2} \int _1^\infty r^{-\gamma -(d+m)/2}e^{-cr^{1/(1-\alpha )}} dr \nonumber \\\le & {} C t^{(1-\gamma )\alpha -\beta } (\phi ^{-1}(t^{-\alpha }))^{(d+m)/2}. \end{aligned}$$
(A.11)

As (A.10), if \(r \le 2t^{\alpha }\), then by (3.4)

$$\begin{aligned} \phi ^{-1}(t^{-\alpha })\le \phi ^{-1}(2r^{-1}) \le \left( \frac{2}{\kappa _0} \right) ^{1/\delta _{0}} \phi ^{-1}(r^{-1}). \end{aligned}$$

Therefore,

$$\begin{aligned} t^{(1-\gamma )\alpha -\beta } (\phi ^{-1}(t^{-\alpha }))^{(d+m)/2}&\le C \int _{t^\alpha }^{2t^{\alpha }} (\phi ^{-1}(r^{-1}))^{(d+m)/2} r^{-\gamma }t^{-\beta } dr \\&\le C \int _{(\phi (|x|^{-2}))^{-1}}^{2t^{\alpha }} (\phi ^{-1}(r^{-1}))^{(d+m)/2} r^{-\gamma }t^{-\beta } dr. \end{aligned}$$

This and (A.11) take care of II, and consequently (3.9) is proved.

(iv) See [27, Corollary 3.9] for (3.10). We prove (3.11). By (3.8), (3.9), Fubini’s theorem, and (A.1),

$$\begin{aligned} \int _{{\mathbb {R}}^d} |q^\gamma _{\alpha ,\beta }(t,x)|dx= & {} \int _{|x|\ge (\phi ^{-1}(t^{-\alpha }))^{-\frac{1}{2}}} |q^\gamma _{\alpha ,\beta }(t,x)|dx \\&+\int _{|x|< (\phi ^{-1}(t^{-\alpha }))^{-\frac{1}{2}}} |q^\gamma _{\alpha ,\beta }(t,x)|dx \\\le & {} C \int _{|x|\ge (\phi ^{-1}(t^{-\alpha }))^{-\frac{1}{2}}} t^{\alpha -\beta }\frac{\phi (|x|^{-2})^\gamma }{|x|^d} dx \\&+ C \int _{|x|< (\phi ^{-1}(t^{-\alpha }))^{-\frac{1}{2}}} \int _{(\phi (|x|^{-2}))^{-1}}^{2t^{\alpha }} (\phi ^{-1}(r^{-1}))^{d/2} r^{-\gamma }t^{-\beta } dr dx \\\le & {} C \int _{r\ge \left( \phi ^{-1}(t^{-\alpha }) \right) ^{-\frac{1}{2}}} t^{\alpha -\beta } \frac{\phi (r^{-2})^\gamma }{r}dr \\&+ C \int _{0}^{2t^\alpha } \int _{(\phi (|x|^{-2}))^{-1}\le r} (\phi ^{-1}(r^{-1}))^{d/2} r^{-\gamma }t^{-\beta } dx dr \\\le & {} C t^{(1-\gamma )\alpha -\beta } + C \int _0^{2t^\alpha } r^{-\gamma }t^{-\beta } dr \le C t^{(1-\gamma )\alpha -\beta }. \end{aligned}$$

(v) By (3.24) in [27] (or see (34) of [18]),

$$\begin{aligned} \int _0^\infty e^{-sr}\varphi _{\alpha ,\beta }(t,r)dr = t^{\alpha -\beta } E_{\alpha ,1-\beta +\alpha }(-st^\alpha ). \end{aligned}$$

Hence, by Fubini’s theorem and (A.5) for \(\gamma \in (0,1)\),

$$\begin{aligned} {\mathcal {F}}_d(q^\gamma _{\alpha ,\beta })(t,\xi )&= \int _0^\infty \varphi _{\alpha ,\beta }(t,r)\left[ \int _{{\mathbb {R}}^d}e^{-ix\cdot \xi } \phi (\varDelta )^\gamma p(r,x)dx \right] dr \\&=-\int _0^\infty \varphi _{\alpha ,\beta }(t,r) \phi (|\xi |^2)^\gamma e^{-r\phi (|\xi |^2)} dr \\&=-t^{\alpha -\beta } \phi (|\xi |)^\gamma E_{\alpha ,1-\beta +\alpha }(-t^\alpha \phi (|\xi |^2))). \end{aligned}$$

Similarly, we get

$$\begin{aligned} {\mathcal {F}}_d(q_{\alpha ,\beta })(t,\xi )&= \int _0^\infty \varphi _{\alpha ,\beta }(t,r)\left[ \int _{{\mathbb {R}}^d}e^{-ix\cdot \xi } p(r,x)dx \right] dr \\&=t^{\alpha -\beta } E_{\alpha ,1-\beta +\alpha }(-t^\alpha \phi (|\xi |^2)). \end{aligned}$$

Thus (v) is also proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KH., Park, D. & Ryu, J. A Sobolev space theory for the stochastic partial differential equations with space-time non-local operators. J. Evol. Equ. 22, 57 (2022). https://doi.org/10.1007/s00028-022-00813-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00813-7

Keywords

Mathematics Subject Classification

Navigation