Skip to main content
Log in

Well-posedness and stability results for nonlinear abstract evolution equations with time delays

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider abstract evolution equations with a nonlinear term depending on the state and on delayed states. We show that, if the \(C_0\)-semigroup describing the linear part of the model is exponentially stable, then the whole system retains this property under some Lipschitz continuity assumptions on the nonlinearity. More precisely, we give a general exponential decay estimate for small time delays if the nonlinear term is globally Lipschitz and an exponential decay estimate for solutions starting from small data when the nonlinearity is only locally Lipschitz and the linear part is a negative selfadjoint operator. In the latter case we do not need any restriction on the size of the time delays. In both cases, concrete examples are presented that illustrate our abstract results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alabau-Boussouira, S. Nicaise and C. Pignotti. Exponential stability of the wave equation with memory and time delay. New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer Indam Ser., 10:1–22, 2014.

    MathSciNet  MATH  Google Scholar 

  2. K. Ammari, S. Nicaise and C. Pignotti. Feedback boundary stabilization of wave equations with interior delay. Systems and Control Lett., 59:623–628, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bátkai and S. Piazzera. Semigroups for delay equations, Research Notes in Mathematics, 10. AK Peters, Ltd., Wellesley, MA, 2005.

    MATH  Google Scholar 

  4. C. Bardos, G. Lebeau and J. Rauch. Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim., 30:1024–1065, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. M. Dafermos. Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal., 37:297–308, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Datko. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim., 26:697–713, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Datko, J. Lagnese and M. P. Polis. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim., 24:152–156, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. I.  Freedman and X. Q. Zhao. Global asymptotics in some quasimonotone reaction-diffusion systems with delays. J. Differential Equations, 137(2):340–362, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Friesecke. Convergence to equilibrium for delay-diffusion equations with small delay. J. Dynam. Differential Equations, 5:89–103, 1993.

    Article  MathSciNet  Google Scholar 

  10. C. Giorgi, J. E.  Muñoz Rivera and V. Pata. Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl., 260:83–99, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics. Pitman, Boston–London–Melbourne, 1985.

    Google Scholar 

  12. A. Guesmia. Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay. IMA J. Math. Control Inform., 30:507–526, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Inoue, T. Miyakawa and K. Yoshida. Some properties of solutions for semilinear heat equations with time lag. J. Differential Equations, 24(3):383–396, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  15. V. Komornik. Exact controllability and stabilization, the multiplier method, volume 36 of RMA. Masson, Paris, 1994.

    Google Scholar 

  16. J. H. Lightbourne and S. M. Rankin. Global existence for a delay differential equation. J. Differential Equations, 40(2):186–192, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Liu. Asymptotic behavior of solutions of time-delayed Burgers’ equation. Discrete Contin. Dyn. Syst. Ser. B, 2(1):47–56, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. C. Memory. Stable and unstable manifolds for partial functional-differential equations. Nonlinear Anal., 16(2):131–142, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Nicaise and C. Pignotti. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim., 45:1561–1585, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Nicaise and C. Pignotti. Stabilization of second-order evolution equations with time delay. Math. Control Signals Systems, 26:563–588, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Nicaise and C. Pignotti. Exponential stability of abstract evolution equations with time delay. J. Evol. Equ., 15:107–129, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. M. Oliva. Reaction-diffusion equations with nonlinear boundary delay. J. Dynam. Differential Equations, 11:279–296, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. V. Pao. Dynamics of nonlinear parabolic systems with time delays. J. Math. Anal. Appl., 198(3):751–779, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. V. Pao. Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays. Nonlinear Anal. Real World Appl., 5(1):91–104, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Pazy. Semigroups of linear operators and applications to partial differential equations, Vol. 44 of Applied Math. Sciences. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  26. C. Pignotti. A note on stabilization of locally damped wave equations with time delay. Systems and Control Lett., 61:92–97, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Ruan and X. Q. Zhao. Persistence and extinction in two species reaction-diffusion systems with delays. J. Differential Equations, 156(1):71–92, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Said-Houari and A. Soufyane. Stability result of the Timoshenko system with delay and boundary feedback. IMA J. Math. Control Inform., 29:383–398, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Q. Xu, S. P. Yung and L. K. Li. Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var., 12(4):770–785, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Zuazua. Exponential decay for the semi-linear wave equation with locally distributed damping. Comm. Partial Differential Equations, 15:205–235, 1990.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the second author is partially supported by the GNAMPA 2016 project Controllo, regolarità e viabilità per alcuni tipi di equazioni diffusive and the GNAMPA 2017 project Comportamento asintotico e controllo di equazioni di evoluzione non lineari (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Pignotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicaise, S., Pignotti, C. Well-posedness and stability results for nonlinear abstract evolution equations with time delays. J. Evol. Equ. 18, 947–971 (2018). https://doi.org/10.1007/s00028-018-0427-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0427-5

Navigation