Skip to main content
Log in

Convergence to equilibrium for delay-diffusion equations with small delay

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

It is shown that for scalar dissipative delay-diffusion equationsu tΔu=f(u(t),u(t−τ)) with a small delay, all solutions are asymptotic to the set of equilibria ast tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fitzgibbon, W. E. (1978). Semilinear functional differential equations in Banach space.J. Diff. Eq. 29, 1–14.

    Google Scholar 

  2. Friesecke, G. (1992). Exponentially growing solutions for a delay-diffusion equation with negative feedback.J. Diff. Eq. 98, 1–18.

    Google Scholar 

  3. Green, D., and Stech, H. W. (1981). Diffusion and hereditary effects in a class of population models.Diff. Eq. Appl. Ecol. Epidem. Popul. Problems, 19–28.

  4. Hale, J. (1988). Asymptotic behavior of dissipative systems.Math. Surv. Monogr. AMS, Vol. 20.

  5. Hale, J. (1977).Theory of Functional Differential Equations, Springer Applied Mathematical Sciences, Vol. 3.

  6. Henry, D. (1981).Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, Vol. 840.

  7. Hutchinson, G. E. (1948). Circular causal systems in ecology.Ann. N. Y. Acad. Sci. 50, 221–246.

    Google Scholar 

  8. Inoue, A., Miyakawa, T., and Yoshida, K. (1977). Some properties of solutions for semilinear heat equations with time lag.J. Diff. Eq. 24, 383–396.

    Google Scholar 

  9. Lighbourne, J. H., and Rankin, S. M. (1981). Global existence for a delay differential equationJ. Diff. Eq. 40, 186–192.

    Google Scholar 

  10. Lions, J. L. (1969).Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod.

  11. Luckhaus, S. (1986). Global boundedness for a delay differential equation.Trans. AMS 294, 767–774.

    Google Scholar 

  12. Paret-Mallet, J. (1988). Morse decompositions for delay differential equations.J. Diff. Eq. 72, 270–315.

    Google Scholar 

  13. Matano, H. (1979). Asymptotic behavior and stability of solutions of semilinear diffusion equations.Publ. Res. Inst. Math. Sci. 15, 401–458.

    Google Scholar 

  14. Memory, M. (1989). Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion.SIAM J. Math. Anal. 20, 533–546.

    Google Scholar 

  15. Memory, M. (1991). Stable and unstable manifolds for partial functional differential equations.Nonlin. Anal. 16, 131–142.

    Google Scholar 

  16. Mielke, A. (1987). Über maximaleL p-Regularität für Differentialgleichungen in Banachund Hubert-Räumen.Math. Ann.,277, 121–133.

    Google Scholar 

  17. Travis, C. C., and Webb, G. F. (1974). Existence and stability for partial functional differential equations.Trans. AMS 200, 395–418.

    Google Scholar 

  18. Yoshida, K. (1982). The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology.Hiroshima Math. J. 12, 321–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friesecke, G. Convergence to equilibrium for delay-diffusion equations with small delay. J Dyn Diff Equat 5, 89–103 (1993). https://doi.org/10.1007/BF01063736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063736

Key words

Navigation