Skip to main content
Log in

Stability of geodesic spheres in \(\varvec{\mathbb {S}^{n+1}}\) under constrained curvature flows

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper we discuss the stability of geodesic spheres in \(\mathbb {S}^{n+1}\) under constrained curvature flows. We prove that under some standard assumptions on the speed and weight functions, the spheres are stable under perturbations that preserve a volume type quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Alikakos and A. Freire. The normalized mean curvature flow for a small bubble in a Riemannian manifold. J. Differential Geom., 64(2):247–303, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Cabezas-Rivas and V. Miquel. Volume preserving mean curvature flow in the hyperbolic space. Indiana Univ. Math. J., 56(5):2061–2086, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Escher and G. Simonett. The volume preserving mean curvature flow near spheres. Proc. Amer. Math. Soc., 126(9):2789–2796, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Gao, D. Hug, and R. Schneider. Intrinsic volumes and polar sets in spherical space. Math. Notae, 41:159–176 (2003), 2001/02. Homage to Luis Santaló. Vol. 1 (Spanish).

  5. C. Guenther, J. Isenberg, and D. Knopf. Stability of the Ricci flow at Ricci-flat metrics. Comm. Anal. Geom., 10(4):741–777, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Hartley. Stability of stationary solutions to curvature flows. PhD Thesis.

  7. D. Hartley. Motion by mixed volume preserving curvature functions near spheres. Pacific J. Math., 274(2):437–450, 2015.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Hartley. Stability of near cylindrical stationary solutions to weighted-volume preserving curvature flows. J. Geom. Anal., 26(3):2169–2203, 2016.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Huisken. The volume preserving mean curvature flow. J. Reine Angew. Math., 382:35–48, 1987.

    MATH  MathSciNet  Google Scholar 

  10. A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.

  11. J.A. McCoy. Mixed volume preserving curvature flows. Calc. Var. Partial Differential Equations, 24(2):131–154, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Vanderbauwhede and G. Iooss. Center manifold theory in infinite dimensions. In Dynamics reported: expositions in dynamical systems, volume 1 of Dynam. Report. Expositions Dynam. Systems (N.S.), pages 125–163. Springer, Berlin, 1992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hartley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartley, D. Stability of geodesic spheres in \(\varvec{\mathbb {S}^{n+1}}\) under constrained curvature flows. J. Evol. Equ. 17, 1209–1225 (2017). https://doi.org/10.1007/s00028-016-0378-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0378-7

Keywords

Mathematics Subject Classification

Navigation