Skip to main content
Log in

On the global well-posedness of strong dynamics of incompressible nematic liquid crystals in \({\mathbb{R}^N}\)

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the motion of a viscous incompressible liquid crystal flow in the N-dimensional whole space. We prove the global well-posedness of strong solutions for small initial data by combining the maximal \({L_p-L_q}\) regularities and \({L_p-L_q}\) decay properties of solutions for the Stokes equations and heat equations. As a result, we also proved the decay properties of the solutions to the nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amann. Linear and quasilinear parabolic problems. Vol. I, vol. 89 of Monographs in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1995.

  2. M. C. Calderer. On the mathematical modeling of textures in polymeric liquid crystals. Nematics (Orsay, 1990), 25-36, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, 1991.

  3. M. C. Calderer, and C. Liu. Liquid crystal flow: dynamic and static configurations. SIAM J. Appl. Math., 60 (6) (2002), 1925–1949 (electronic).

  4. M. C. Calderer, and C. Liu. Mathematical developments in the study of smectic A liquid crystals. The Eringen Symposium dedicated to Pierre-Gilles de Gennes (Pullman, WA, 1998). Internat. J. Engrg. Sci., 38 (9-10) (2000), 1113–1128.

  5. M. C. Calderer, D. Golovaty, F-H. Lin and C. Liu. Time evolution of nematic liquid crystals with variable degree of orientation. SIAM J. Math. Anal., 33 (5) (2002), 1033–1047 (electronic).

  6. S. Chandrasekhar. Liquid Crystals, Cambridge University press, 1992

  7. Chu Y.-M., Liu X.-G., Lin X.: Strong solutions to the compressible liquid crystal system. Pacific J. Math. 257, 37–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chu Y.-M., Liu X.-G., Ma W.-Y., Peng L-Q.: Existence in non-smooth domain for compressible liquid crystals. Math. Methods Appl. Sci. 36, 627–641 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Countand D., Shkoller S.: Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals. C. R. Acad. Sci. Paris Sér. I Math. 333, 919–924 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding S., Lin J., Wang C., Wen H.: Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete Contin. Dyn. Syst. 32, 539–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding S., Huang J., Lin J.: Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions. Sci. China Math., 56, 2233–2250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ericksen J. L.: Conservation Laws for Liquid Crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    MathSciNet  Google Scholar 

  13. Ericksen J.L.: Hydrostatic theory of liquid crystals. Arch. Rational Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  14. J. L. Ericksen and D. Kinderlehrer, eds. Theory and applications of liquid crystals, vol. 5 of The IMA Volumes in Mathematics and its Applications, Springer-Verlag, New York, 1987. Papers from the IMA workshop held in Minneapolis, Minn., January 21–25, 1985

  15. Ericksen J. L.: Continuum Theory of Nematic Liquid Crystals. Res Mechanica 21, 381–392 (1987)

    Google Scholar 

  16. Feireisl E., Frémond M., Rocca E., Schimperna G.: A new approach to non-isothermal models for nematic liquid crystals. Arch. Rational Mech. Anal. 205(2), 651–672 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hardt R., Kinderlehrer D., Lin F.-H.: Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105(4), 547–570 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hieber, M. Nesensohn, J. Prüss and K. Schade, Dynamics of nematic liquid crystal flows, Ann. Inst. H. Poincare Anal. Non Lineaire, in press.

  19. Hu X., Wu H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45(5), 2678–2699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang T., Wang C., Wen H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differential Equations 252, 2222–2265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Jiang, and Zhong Tan. Global Weak Solution to the Flow of Liquid Crystals System. Math. Meth. Appl. Sci., 32 (2009), 2243–2266.

  22. Kinderlehrer D., Lin F-H., Hardt R.: Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105(4), 547–570 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Kinderlehrer. Recent Developments in Liquid Crystal Theory. Frontiers in pure and applied mathematics, 151-178, North-Holland, Amsterdam, 1991.

  24. Leslie F. M.: Some constitutive equations for liquid crystals. Arch. rational Mech. Anal. 28(4), 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. M. Leslie. Theory of flow phenomena in liquid crystals. Advances in Liquid Crystals, Vol 4 G. Brown ed., Academic Press, New York, 1979 1– 81.

  26. Lin F.-H.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. 42(6), 789–814 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin F.-H., Liu C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and continuous Dynamical Systems 2(1), 1–22 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Lin F. H., Lin C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154(2), 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma S.: Classical solutions for the compressible liquid crystal flows with nonnegative initial densities. J. Math Anal. Appl. 397(2), 595–618 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schade K., Shibata Y.: On Strong Dynamics of Compressible Nematic Liquid Crystals. SIAM J. Math. 47(5), 3963–3992 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shibata Y., Shimizu S.: On the \({L_p-L_q}\) maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math. 615, 157–209 (2008)

    MathSciNet  MATH  Google Scholar 

  33. H. Tababe, Functional Analytic Methods for Partial Differential Equations, Monographs and textbooks in pure and applied mathematics; 204, Marcel Dekker, New York, 1997.

  34. Wang D., Yu C.: Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch. Ration. Mech. Anal. 204, 881–915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu H.: Long-time Behavior for Nonlinear Hydrodynamic System Modeling the Nematic Liquid Crystal Flows. Discrete Contin. Dyn. Syst. 26(1), 379–396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu H., Xu X., Liu C.: On the General Ericksen-Leslie System: Parodi’s Relation, Well-posedness and Stability. Arch. Rational Mech. Anal. 204(2), 511–531 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Shibata.

Additional information

We gratefully dedicate this article to our good friend and wonderfulmathematician, Professor Dr. Jan Prüss, on the occasion of his 65th birthday.

M. Schonbek: Partially supported by Top Global University Project.

Y. Shibata: Partially supported by Top Global University Project and JSPS Grant-in-aid for Scientific Research (S) # 24224004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schonbek, M., Shibata, Y. On the global well-posedness of strong dynamics of incompressible nematic liquid crystals in \({\mathbb{R}^N}\) . J. Evol. Equ. 17, 537–550 (2017). https://doi.org/10.1007/s00028-016-0358-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0358-y

Mathematics Subject Classification

Keywords

Navigation