Skip to main content
Log in

Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In two dimensions, we study the compressible hydrodynamic flow of liquid crystals with periodic boundary conditions. As shown by Ding et al. (2013), when the parameter λ → ∞, the solutions to the compressible liquid crystal system approximate that of the incompressible one. Furthermore, Ding et al. (2013) proved that the regular incompressible limit solution is global in time with small enough initial data. In this paper, we show that the solution to the compressible liquid crystal flow also exists for all time, provided that λ is sufficiently large and the initial data are almost incompressible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climent-Ezquerra B, Guillén-González F, Rojas-Medar M. Reproductivity for a nematic liquid crystal model. Z Angew Math Phys, 2006, 57: 984–998

    Article  MathSciNet  MATH  Google Scholar 

  2. Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35: 771–831

    Article  MathSciNet  MATH  Google Scholar 

  3. Casella E, Secchi P, Trebeschi P. Global existence of 2D slightly compressible viscous magneto-fluid motion. Port Math N S, 2002, 59: 67–89

    MathSciNet  MATH  Google Scholar 

  4. Choe H J, Jin B J. Global existence of solutions to slightly compressible Navier-Stokes equations in two dimension. Preprint

  5. De Gennes P G. The Physics of Liquid Crystals. New York: Oxford University Press, 1974

    Google Scholar 

  6. Ding S J, Huang J R, Wen H Y, et al. Incompressible limit of the compressible hydrodynamic flow. J Funct Anal, 2013, 264: 1711–1756

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding S J, Lin J Y, Wang C Y, et al. Compressible hydrodynamic flow of liquid crystals in 1D. Discret Contin Dyn Syst, 2012, 32: 539–563

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding S J, Wang C Y, Wen H Y. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discret Contin Dyn Syst, 2011, 15: 357–371

    MathSciNet  MATH  Google Scholar 

  9. Ericksen J. Hydrostatic theory of liquid crystal. Arch Ration Mech Anal, 1962, 9: 371–378

    MathSciNet  MATH  Google Scholar 

  10. Feireisl E, Rocca E, Schimperna G. On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24: 243–257

    Article  MathSciNet  MATH  Google Scholar 

  11. Hagstrom T, Lorenz J. All-time existence of smooth solutions to PDEs of mixed type and the invariant subspace of uniform states. Adv Appl Math, 1995, 16: 219–257

    Article  MathSciNet  MATH  Google Scholar 

  12. Hagstrom T, Lorenz J. All-time existence of classical solutions for slightly compressible flows. SIAM J Math Anal, 1998, 29: 652–672

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu X P, Wu H. Global solution to the three-dimensional compressible flow of liquid crystals. ArXiv:1206.2850v1, 2012

    Google Scholar 

  14. Huang T, Wang C Y, Wen H Y. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252: 2222–2265

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang T, Wang C Y, Wen H Y. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285–311

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Math Methods Appl Sci, 2009, 30: 2243–2266

    Article  MathSciNet  Google Scholar 

  17. Klainerman S, Majda A. Singular limits of quasilinear hyperbolic system with large paramiters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34: 481–524

    Article  MathSciNet  MATH  Google Scholar 

  18. Kreiss H O, Lorenz H. Initial-Boundary Value Problems and The Navier-Stokes Equations. New York: Academic Press, 1989

    MATH  Google Scholar 

  19. Lei Z, Zhou Y. Global existence of classical solution for the two-dimensional Oldroyd model via the incompressible limit. SIAM J Math Anal, 2005, 37: 797–814

    Article  MathSciNet  MATH  Google Scholar 

  20. Leslie F. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28: 265–283

    Article  MathSciNet  MATH  Google Scholar 

  21. Li J, Xu Z H, Zhang J W. Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows. ArXiv:1204.4966v1, 2012

    Google Scholar 

  22. Li X L, Wang D H. Global strong solution to the density-dependent incompressible flow of liquid crystals. Trans Amer Math Soc, in press

  23. Lin F H. Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena. Comm Pure Appl Math, 1989, 42: 789–814

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin F H, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math, 1995, 48: 501–537

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin F H, Liu C. Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discret Contin Dyn Syst, 1996, 2: 1–22

    MATH  Google Scholar 

  26. Lin F H, Liu C. Existence of solutions for the Ericksen-Leslie system. Arch Ration Mech Anal, 2000, 154: 135–156

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin F H, Lin J Y, Wang C Y. Liquid crystal flows in two dimensions. Arch Ration Mech Anal, 2010, 197: 297–336

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu C, Walkington N J. Mixed methods for the approximation of liquid crystal flows. Math Model Numer Anal, 2002, 36: 205–222

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu X G, Liu L M, Hao Y H. Existence of strong solutions for the compressible Ericksen-Leslie model. ArXiv:1106. 6140v1, 2011

    Google Scholar 

  30. Liu X G, Liu L M, Hao Y H. A blow-up criterion of strong solutions to the compressible liquid crystals system. Chin Ann Math Ser A, 2011, 32: 393–406

    MATH  Google Scholar 

  31. Liu X G, Hao Y H. Incompressible limit of a compressible liquid crystals system. ArXiv:1201.5942, 2012

    Google Scholar 

  32. Liu X G, Zhang Z Y. Existence of the flow of liquid crystals system. Chin Ann Math Ser A, 2009, 30: 1–20

    Article  MATH  Google Scholar 

  33. Wang D H, Yu C. Incompressible limit for the compressible flow of liquid crystals. ArXiv:1108.4941v1, 2011

    Google Scholar 

  34. Wang D H, Yu C. Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch Ration Mech Anal, 2012, 204: 881–915.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wen H Y, Ding S J. Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Anal: Real World Appl, 2011, 12: 1510–1531

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRui Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S., Huang, J. & Lin, J. Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions. Sci. China Math. 56, 2233–2250 (2013). https://doi.org/10.1007/s11425-013-4620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4620-2

Keywords

MSC(2010)

Navigation