Skip to main content
Log in

Periodic solutions of third-order integro-differential equations in vector-valued functional spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We investigate the well-posedness of the third-order integro-differential equations \({{(P_{3})} : {\alpha u'''(t)+u''(t)} {=\beta Au(t)+\beta\int_{-\infty}^t a(t-s)Au(s){\rm d}s+\gamma Bu'(t)+f(t),(t \in {\mathbb{T}}:=[0,2\pi])}}\) with periodic boundary conditions \({u(0)=u(2\pi),\ u'(0)=u'(2\pi),\ u''(0)=u''(2\pi)}\), in periodic Lebesgue–Bochner spaces \({L^p({\mathbb{T}}; X)}\), periodic Besov spaces \({B_{p,q}^{s}({\mathbb{T}}; X)}\) and periodic Triebel–Lizorkin spaces \({F_{p,q}^{s}({\mathbb{T}}; X)}\), where A and B are closed linear operators on a Banach space X satisfying \({D(A)\cap D(B) \neq \{0\}, a\in L^{1}({\mathbb{R}_{+}})}\) and \({\alpha,\beta,\gamma}\) are positive constants. We completely characterize the well-posedness of (P 3) in the above three function spaces by using operator-valued Fourier multiplier theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr. 186, 5–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt W., Bu S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240, 311–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt W., Bu S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. 47, 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arendt W., Batty C., Bu S.: Fourier multipliers for Hölder continuous functions and maximal regularity. Studia Math. 160, 23–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bose S.K., Gorain G.C.: Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure. J. Optim. Theory Appl. 99, 423–442 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bose S.K., Gorain G.C.: Exact controllability and boundary stabilization of flexural vibrations of an internally damped flexible space structure. Appl. Math. Comput. 126, 341–360 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Bose S.K., Gorain G.C.: Uniform stability of damped nonlinear vibrations of an elastic string. Proc. Indian Acad. Sci. Math. Sci. 113, 443–449 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bu S., Kim J.: Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sinica, English Series. 21(5), 1049–1056 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bu S., Fang Y.: Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces. Studia Math. 184(2), 103–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bu S., Fang Y.: Periodic solutions of delay equations in Besov spaces and Triebel-Lizorkin spaces. Taiwanese J. Math. 13(3), 1063–1076 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Bu S.: Well-posedness of second order degenerate differential equations in vector-valued function spaces. Studia Math. 214, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bu S., Cai G.: Solutions of second order degenerate integro-differential equations in vector-valued functional spaces. Sci. China Math. 56(5), 1059–1072 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Cuevas and C. Lizama: Well posedness for a class of flexible structure in Hölder spaces. Math. Probl. Eng. (2009), Art. ID 358329, 13.

  14. A. Favini and A. Yagi: Degenerate Differential Equations in Banach Spaces. Pure Appl. Math. 215, Dekker, New York, 1999.

  15. C. Fernández, C. Lizama, and V. Poblete: Maximal regularity for flexible structural systems in Lebesgue spaces. Math. Probl. Eng. (2010), Art. ID 196956, 15.

  16. Fernández C., Lizama C., Poblete V.: Regularity of solutions for a third order differential equation in Hilbert spaces. Appl. Math. Comput. 217, 8522–8533 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Gorain G.C.: Exponential energy decay estimate for the solutions of internally damped wave equation in a bounded domain. J. Math. Anal. Appl. 216, 510–520 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gorain G.C.: Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in \({{\mathbb{R}^{n}}}\). J. Math. Anal. Appl. 319, 635–650 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haase M.: The Functional Calculus for Sectorial Operators. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  20. Kalton N., Weis L.: The \({H^{\infty}}\)-calculus and sums of closed operators. Math. Ann. 321, 319–345 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kato: Perturbation Theory for Linear Operators. Vol. 132, Grundlehren der Mathematischen Wissenschaften, New York, NY: Springer-Verlag, 1980.

  22. Keyantuo V., Lizama C.: Fourier multipliers and integro-differential equations in Banach spaces. J. London Math. Soc. 69(3), 737–750 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keyantuo V., Lizama C.: Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces. Studia Math. 168(1), 25–50 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keyantuo V., Lizama C., Poblete V.: Periodic solutions of integro-differential equations in vector-valued function spaces. J. Differential Equations 246(3), 1007–1037 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lizama C., Ponce R.: Periodic solutions of degenerate differential equations in vector valued function spaces. Studia Math. 202(1), 49–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lizama C., Ponce R.: Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces. Proc. Edin. Math. Soc. 56(3), 853–871 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Poblete V.: Maximal regularity of second-order equations with delay. J. Differential Equations 246, 261–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Poblete V.: Solutions of second-order integro-differential equations on periodic Besov spaces. Proc. Edinb. Math. Soc. 50(2), 477–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Poblete V., Pozo J.C.: Periodic solutions of an abstract third-order differential equation. Studia Math. 215, 195–219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ponce R.: Hölder continuous solutions for fractional differential equations and maximal regularity. J. Differential Equations 255, 3284–3304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weis L.: Operator-valued Fourier multiplier theorems and maximal \({L^{p}}\)-regularity. Math. Ann. 319, 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Cai.

Additional information

This work was supported by the NSF of China (No. 11571194,11401063), the Specialized Research Fund for the Doctoral Program of Higher Education (20120002110044), the Natural Science Foundation of Chongqing (cstc2014jcyjA00016) and Science and Technology Project of Chongqing Education Committee (Grant No. KJ1500314).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Bu, S. Periodic solutions of third-order integro-differential equations in vector-valued functional spaces. J. Evol. Equ. 17, 749–780 (2017). https://doi.org/10.1007/s00028-016-0335-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0335-5

Mathematics Subject Classification

Keywords

Navigation