Skip to main content
Log in

Periodic Solutions of Third-order Differential Equations with Finite Delay in Vector-valued Functional Spaces

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we study the well-posedness of the third-order differential equation with finite delay (P3): αu‴ (t) + u″(t) = Au(t) + Bu′ (t) + Fut + f(t)(t\(\mathbb{T}\):= [0, 2π]) with periodic boundary conditions u(0) = u(2π), u′(0) = u′(2π), u″ (0) = u″(2π), in periodic Lebesgue–Bochner spaces Lp(\(\mathbb{T}\);X) and periodic Besov spaces Bp,qs(\(\mathbb{T}\);X), where A and B are closed linear operators on a Banach space X satisfying D(A) ∩ D(B) ≠{0}, α ≠ 0 is a fixed constant and F is a bounded linear operator from Lp([−2π, 0];X) (resp. Bp,qs([−2π, 0];X)) into X, ut is given by ut(s) = u(t + s) when s ∈ [−2π, 0]. Necessary and sufficient conditions for the Lp-well-posedness (resp. Lp-well-posedness) of (P3) are given in the above two function spaces. We also give concrete examples that our abstract results may be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Bu, S.: The operator–valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z., 240, 311–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Bu, S.: Operator–valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc., 47, 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bu, S., Cai, G.: Well–posedness of second–order degenerate differential equations with finite delay in vectorvalued function spaces. Pacific J. Math., 288(1), 27–46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bu, S., Kim, J.: Operator–valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sin., Engl. Ser., 21(5), 1049–1056 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bu, S., Fang, Y.: Periodic solutions for second order integro–differential equations with infinite delay in Banach spaces. Studia Math., 184(2), 103–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bu, S., Fang, Y.: Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces. Taiwanese J. Math., 13(3), 1063–1076 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bu, S., Fang, Y.: Maximal regularity of second order delay equations in Banach spaces. Sci. China Math., 53, 51–62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haase, M.: The Functional Calculus for Sectorial Operators, Birkhäuser Verlag, Basel, 2005

    MATH  Google Scholar 

  9. Kalton, N., Weis, L.: The H∞–calculus and sums of closed operators. Math. Ann., 321, 319–345 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keyantuo, V., Lizama, C.: Fourier multipliers and integro–differential equations in Banach spaces. J. London Math. Soc., 69(3), 737–750 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Keyantuo, V., Lizama, C.: Maximal regularity for a class of integro–differential equations with infinite delay in Banach spaces. Studia Math., 168(1), 25–50 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lizama, C., Poblete, V.: Maximal regularity of delay equations in Banach spaces. Studia Math., 175, 91–102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lizama, C.: Fourier multipliers and periodic solutions of delay equations in Banach spaces. J. Math. Anal. Appl., 324, 921–933 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lizama, C., Ponce, R.: Maximal regularity for degenerate diferential equations with infinite delay in periodic vector–valued function spaces. Proc. Edinb. Math. Soc., 56, 853–871 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lizama, C., Pereira, A., Ponce, R.: On the compactness of fractional resolvent operator functions. Semi. Form., 93(2), 363–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lizama, C., Murillo, M.: Maximal regularity in lp spaces for discrete time fractional shifted equations. J. Differential Equ., 263(6), 3175–3196 (2017)

    Article  MATH  Google Scholar 

  17. Poblete, V.: Solutions of second–order integro–differential equations on periodic Besov spaces. Proc. Edinb. Math. Soc., 50(2), 477–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Poblete, V.: Maximal regularity of second–order equations with delay. J. Differential Equations, 246, 261–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Poblete, V., Pozo, J. C.: Periodic solutions of an abstract third–order differential equation. Studia Math., 215, 195–219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Cai.

Additional information

Supported by the NSF of China (Grant Nos. 11571194, 11731010 and 11771063), the Natural Science Foundation of Chongqing (Grant No. cstc2017jcyjAX0006), Science and Technology Project of Chongqing Education Committee (Grant No. KJ1703041), the University Young Core Teacher Foundation of Chongqing (Grant No. 020603011714), Talent Project of Chongqing Normal University (Grant No. 02030307-00024)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, S.Q., Cai, G. Periodic Solutions of Third-order Differential Equations with Finite Delay in Vector-valued Functional Spaces. Acta. Math. Sin.-English Ser. 35, 105–122 (2019). https://doi.org/10.1007/s10114-018-8001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-018-8001-1

Keywords

MR(2010) Subject Classification

Navigation