Skip to main content
Log in

Uniqueness properties of degenerate elliptic operators

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Let Ω be an open subset of R d and \({ K=-\sum^d_{i,j=1}\partial_i\,c_{ij}\,\partial_j+\sum^d_{i=1}c_i\partial_i+c_0}\) a second-order partial differential operator with real-valued coefficients \({c_{ij}=c_{ji}\in W^{1,\infty}_{\rm loc}(\Omega),c_i,c_0\in L_{\infty,{\rm loc}}(\Omega)}\) satisfying the strict ellipticity condition \({C=(c_{ij}) >0 }\). Further let \({H=-\sum^d_{i,j=1} \partial_i\,c_{ij}\,\partial_j}\) denote the principal part of K. Assuming an accretivity condition \({C\geq \kappa (c\otimes c^{\,T})}\) with \({\kappa >0 }\), an invariance condition \({(1\!\!1_\Omega, K\varphi)=0}\) and a growth condition which allows \({\|C(x)\|\sim |x|^2\log |x|}\) as |x| → ∞ we prove that K is L 1-unique if and only if H is L 1-unique or Markov unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher P., Barthélemy L., Bénilan P., Ouhabaz E.M.: Absence de la L -contractivité pour les semi-groupes associés aux opérateurs elliptiques complexes sous forme divergence. Potential Anal. 12, 160–189 (2000)

    Article  Google Scholar 

  2. Azencott R.: Behavior of diffusion semi-groups at infinity. Bull. Soc. Math. France. 102, 193–240 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Bouleau, N., Hirsch, F., Dirichlet forms and analysis on Wiener space, vol. 14 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1991.

  4. Davies E.B.: L 1 properties of second order elliptic operators. Bull. London Math. Soc. 17, 417–436 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davies, E.B., Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58 (1992), 99–119. Festschrift on the occasion of the 70th birthday of Shmuel Agmon.

    Google Scholar 

  6. Dunford, N., Schwartz, J.T., Linear operators. Part II: Spectral theory, self adjoint operators in Hilbert space, vol. 7 of Interscience tracts in pure and applied mathematics. Interscience Publishers, John Wiley & Sons, New York, 1963.

  7. Eberle, A., Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators. Lect. Notes in Math. 1718. Springer-Verlag, Berlin etc., 1999.

  8. Feller W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55, 468–519 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feller W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, 1–31 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feller W.: Generalized second order differential operators and their lateral conditions. Illinois J. Math. 1, 459–504 (1957)

    MathSciNet  MATH  Google Scholar 

  11. Fukushima, M., Oshima, Y., Takeda, M., Dirichlet forms and symmetric Markov processes, vol. 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994.

  12. Gaffney M.P.: The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12, 1–11 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977.

  14. Grigor’yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36, 135–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hasminskii R.Z.: Ergodic properties of recurrent diffusion processes and stabilisation of the solution of the Cauchy problem for parabolic equations. Theor. Prob. and Appl. 5, 179–196 (1960)

    Article  MathSciNet  Google Scholar 

  16. Kato, T., Perturbation theory for linear operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1980.

  17. Ma, Z.M., Röckner, M., Introduction to the theory of (non symmetric) Dirichlet Forms. Universitext. Springer-Verlag, Berlin etc., 1992.

  18. Mandl, P. Analytical treatment of one-dimensional Markov processes. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, 1968

  19. Nagel, R., ed., One-parameter semigroups of positive operators, Lecture Notes in Mathematics 1184, Berlin etc., 1986. Springer-Verlag.

  20. Ouhabaz E.-M.: Second order elliptic operators with essential spectrum [0, ∞) on L p. Commun. Part. Diff. Eq. 20, 763–773 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ouhabaz, E.-M., Analysis of heat equations on domains, vol. 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2005.

  22. Robinson D.W., Sikora A.: Degenerate elliptic operators in one-dimension. J. Evol. Equ. 10, 731–759 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Robinson, D.W., Sikora, A., Markov uniqueness of degenerate elliptic operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2011). arXiv:0912.4536.

  24. Robinson D.W., Sikora A.: L 1-uniqueness of degenerate elliptic operators. Studia Math. 203, 79–103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stannat W.: (Non-symmetric) Dirichlet operators on L 1: existence, uniqueness and associated Markov processes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 99–140 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Maati Ouhabaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouhabaz, E.M., Robinson, D.W. Uniqueness properties of degenerate elliptic operators. J. Evol. Equ. 12, 647–673 (2012). https://doi.org/10.1007/s00028-012-0148-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-012-0148-0

Mathematics Subject Classification

Navigation