Skip to main content

Elliptic Operators with Infinitely Many Variables

  • Chapter
  • First Online:
Current Research in Nonlinear Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 135))

  • 791 Accesses

Abstract

We survey some recent results of existence, uniqueness and regularity about elliptic equations with infinitely many variables \(x_h,\;h\in \mathbb N\), where x h  = 〈x, e h 〉 and (e h ) is an orthonormal basis in a separable Hilbert space H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Which is not meaningful in L 2(H, N Q ) because N Q (Q 1∕2(H)) = 0.

  2. 2.

    The integral is intended in the strong sense that is for any fixed x ∈ H.

  3. 3.

    C b (H) represents the space of all real, bounded and continuous functions in H.

  4. 4.

    That is μ << ν and ν << μ.

  5. 5.

    B b (H) is the space of all \(\varphi :H\to \mathbb {R}\) bounded and Borel.

  6. 6.

    \(C^\infty _b(H)\) is the space of all real mappings in \(\mathbb {R}\) which are infinitely many differentiable with bounded derivatives of all order.

  7. 7.

    One can show that μ is unique, see e.g. [3, Theorem 2.34].

  8. 8.

    Note that the function φ h belongs to \(D(\mathcal {L})\) if and only if h ∈ D(A ).

  9. 9.

    For the definition of Γ and H γ , γ ∈ Γ, see the Appendix.

References

  1. H. Airault, P. Malliavin, Intégration géométrique sur l’espace de Wiener. Bull. Sci. Math. 112, 3–52 (1988)

    Google Scholar 

  2. V. Barbu, G. Da Prato, L. Tubaro, Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space. Ann. Probab. 37,1427–1458 (2009)

    Article  MathSciNet  Google Scholar 

  3. G. Da Prato, Kolmogorov equations in Hilbert spaces (Birkhäuser, Basel, 2004).

    Google Scholar 

  4. G. Da Prato, A. Lunardi, Maximal L 2 regularity for Dirichlet problems in Hilbert spaces. J. Math. Pures Appl. 99(6), 741–765 (2013)

    Article  MathSciNet  Google Scholar 

  5. G. Da Prato, A. Lunardi, Sobolev regularity for a class of second order elliptic PDE’s in infinite dimension. Ann. Probab. 42(5), 2113–2160 (2014)

    Article  MathSciNet  Google Scholar 

  6. G. Da Prato, A. Lunardi, Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains. Ann. Inst. Henri Poincaré Probab. Stat. 51(3), 1102–1123 (2015)

    Article  MathSciNet  Google Scholar 

  7. G. Da Prato, J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Notes 293 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  8. G. Da Prato, A. Lunardi, L. Tubaro, Surface measures in infinite dimension. Rend. Lincei Mat. Appl. 25, 309–330 (2014)

    Article  MathSciNet  Google Scholar 

  9. E.B. Davies, One Parameter Semigroups (Academic Press, London, 1980).

    MATH  Google Scholar 

  10. A.N. Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458 (1931)

    Article  MathSciNet  Google Scholar 

  11. A. Lunardi, G. Metafune, D. Pallara, Dirichlet boundary conditions for elliptic operators with unbounded drift. Proc. Am. Math. Soc. 133, 2625–2635 (2005)

    Article  MathSciNet  Google Scholar 

  12. P. Malliavin, Stochastic Analysis (Springer, New York, 1997).

    Book  Google Scholar 

  13. P.A. Meyer, Note sur les processus d’Ornstein–Uhlenbeck, in Séminaire de Probabilités, XVI. Lecture Notes in Mathematics, vol. 920 (Springer, New York, 1982), pp. 95–133.

    Chapter  Google Scholar 

  14. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44 (Springer, New York, 1983)

    Google Scholar 

  15. I. Shigekawa, Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator. J. Math. Kyoto Univ. 32, 731–748 (1982)

    Article  MathSciNet  Google Scholar 

  16. J. Zabczyk, Mathematical Control Theory: An Introduction. Systems & Control: Foundations & Applications (Birkhäuser, Basel, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Da Prato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prato, G.D. (2018). Elliptic Operators with Infinitely Many Variables. In: Rassias, T. (eds) Current Research in Nonlinear Analysis. Springer Optimization and Its Applications, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-89800-1_5

Download citation

Publish with us

Policies and ethics