Skip to main content
Log in

Markov evolutions and hierarchical equations in the continuum. I: one-component systems

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

General birth-and-death as well as hopping stochastic dynamics of infinite particle systems in the continuum are considered. We derive corresponding evolution equations for correlation functions and generating functionals. General considerations are illustrated in a number of concrete examples of Markov evolutions appearing in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezansky Yu.M., Kondratiev Yu.G., Kuna T., Lytvynov E.W.: On a spectral representation for correlation measures in configuration space analysis. Methods Funct. Anal. Topology 5(4), 87–100 (1999)

    MATH  MathSciNet  Google Scholar 

  2. N. N. Bogoliubov. Problems of a Dynamical Theory in Statistical Physics. Gostekhisdat, Moscow, 1946. (in Russian). English translation in J. de Boer and G. E. Uhlenbeck (editors), Studies in Statistical Mechanics, vol. 1, pp. 1–118. North-Holland, Amsterdam, 1962.

  3. Cocozza C., Roussignol M.: Unicitè d’un processus de naissance et mort sur la droite réelle. Ann. Inst. H. Poincaré Sect. B 15, 93–106 (1979)

    MATH  MathSciNet  Google Scholar 

  4. D. L. Finkelshtein, Yu. G. Kondratiev, and O. Kutovyi. Individual based model with competition in spatial ecology. SIAM J. Math. Anal. (to appear).

  5. Finkelshtein D.L., Kondratiev Yu.G., Lytvynov E.W.: Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics. Random Oper. Stochastic Equations 15, 105–126 (2007)

    Article  MathSciNet  Google Scholar 

  6. D. L. Finkelshtein, Yu. G. Kondratiev, and M. J. Oliveira. Markov evolutions and hierarchical equations in the continuum II. Multicomponent systems. In preparation, 2009.

  7. Glötzl E.: Time reversible and Gibbsian point processes. I. Markovian spatial birth and death processes on a general phase space. Math. Nachr. 102, 217–222 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glötzl E.: Time reversible and Gibbsian point processes. II. Markovian particle jump processes on a general phase space. Math. Nachr. 106, 62–71 (1982)

    Article  Google Scholar 

  9. Holley R., Stroock D.W.: Nearest neighbor birth and death processes on the real line. Acta Math. 140, 103–154 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kondratiev Yu.G., Kuna T.: Harmonic analysis on configuration space I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2), 201–233 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kondratiev Yu.G., Kuna T.: Correlation functionals for Gibbs measures and Ruelle bounds. Methods Funct. Anal. Topology 9(1), 9–58 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Yu. G. Kondratiev and T. Kuna. Harmonic analysis on configuration space II. Bogoliubov functional and equilibrium states. In preparation, 2009.

  13. Kondratiev Yu.G., Kuna T., Oliveira M.J.: On the relations between Poissonian white noise analysis and harmonic analysis on configuration spaces. J. Funct. Anal. 213(1), 1–30 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kondratiev Yu.G., Kuna T., Oliveira M.J.: Holomorphic Bogoliubov functionals for interacting particle systems in continuum. J. Funct. Anal. 238(2), 375–404 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Yu. G. Kondratiev, T. Kuna, M. J. Oliveira, J. L. Silva, and L. Streit. Hydrodynamic limits for the free Kawasaki dynamics of continuous particle systems. Preprint, 2008. http://www.math.uni-bielefeld.de/sfb701/preprints/sfb08082.pdf.

  16. Kondratiev Yu.G., Kutovyi O., Minlos R.A.: On non-equilibrium stochastic dynamics for interacting particle systems in continuum. J. Funct. Anal. 255(1), 200–227 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kondratiev Yu.G., Kutoviy O., Pirogov S.: Correlation functions and invariant measures in continuous contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11(2), 231–258 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kondratiev Yu., Kutoviy O., Zhizhina E.: Nonequilibrium Glauber-type dynamics in continuum. J. Math. Phys. 47(11), 113501 (2006)

    Article  MathSciNet  Google Scholar 

  19. Kondratiev Yu., Lytvynov E.: Glauber dynamics of continuous particle systems. Ann. Inst. H. Poincaré Probab. Statist. 41, 685–702 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kondratiev Yu.G., Lytvynov E., Röckner M.: Equilibrium Kawasaki dynamics of continuous particle systems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(2), 185–209 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yu. G. Kondratiev, E. Lytvynov, and M. Röckner. Non-equilibrium stochastic dynamics in continuum: the free case. Condensed Matter Physics (to appear).

  22. Kondratiev Yu., Skorokhod A.: On contact processes in continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(2), 187–198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Kuna. Studies in Configuration Space Analysis and Applications. PhD thesis, Bonner Mathematische Schriften Nr.324, University of Bonn, 1999.

  24. Lenard A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Commun. Math. Phys. 30, 35–44 (1973)

    Article  MathSciNet  Google Scholar 

  25. Lenard A.: States of classical statistical mechanical systems of infinitely many particles I. Arch. Rational Mech. Anal. 59, 219–239 (1975)

    MathSciNet  Google Scholar 

  26. Lenard A.: States of classical statistical mechanical systems of infinitely many particles II. Arch. Rational Mech. Anal. 59, 241–256 (1975)

    MathSciNet  Google Scholar 

  27. Liggett T.M.: Interacting Particle Systems. Springer Verlag, New York (1985)

    MATH  Google Scholar 

  28. Liggett T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer Verlag, Berlin (1999)

    MATH  Google Scholar 

  29. Lotwick H.W., Silverman B.W.: Convergence of spatial birth-and-death processes. Math. Proc. Cambridge Philos. Soc. 90(1), 155–165 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Møller J.: On the rate of convergence of spatial birth-and-death processes. Ann. Inst. Statist. Math. 41, 565–581 (1989)

    Article  MathSciNet  Google Scholar 

  31. Nguyen X.X., Zessin H.: Integral and differential characterizations of the Gibbs process. Math. Nachr. 88, 105–115 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  32. M. J. Oliveira. Configuration Space Analysis and Poissonian White Noise Analysis. PhD thesis, Faculty of Sciences, University of Lisbon, 2002.

  33. C. Preston. Spatial birth-and-death processes. In Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), volume 2, 1975. Bull. Inst. Internat. Statist. 46 (1975), 371–391.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Joã o Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelshtein, D.L., Kondratiev, Y.G. & Oliveira, M.J. Markov evolutions and hierarchical equations in the continuum. I: one-component systems. J. Evol. Equ. 9, 197–233 (2009). https://doi.org/10.1007/s00028-009-0007-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-009-0007-9

Mathematics Subject Classification (2000)

Keywords

Navigation