Skip to main content

Advertisement

Log in

Structure of plankton and waterbird communities under water level fluctuations: two case studies in shallow lakes of the Patagonian steppe

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The Buenos Aires Lake Plateau, a unique semi-arid environment and priority area for waterbird conservation in Argentina, has recently shown reductions in lake sizes due to scarce rainfall. This study assessed the impact of contrasting hydrological conditions on the abiotic variables of lakes Chapu and Cervecero, as well as on the structure of plankton and how this affected the use of the lakes by waterbirds. We show that hydrological conditions shape the abiotic and biological features of these lakes. In 2015, both lakes were vegetated, but by 2016, their water level had dropped, causing decreased macrophyte coverage. In 2017, the lakes dried up completely, but were refilled the following year. The partial drought of 2015-2016 led to reduced concentrations of nutrients and food that support a high density and richness of birds, which are mostly aquatic and terrestrial feeders. After the extreme drought in 2017 and refilling phase in 2018, there was an improvement in the water quality of lake Chapu, as indicated by its increased clarity compared to that in 2015, while Cervecero remained turbid. Increased homogenization in plankton and waterbird species composition became evident in both lakes. There was a cyanobacteria bloom in Cervecero, while in Chapu Gammaproteobacteria were dominant. Both lakes supported few waterbirds, of which aquatic-terrestrial feeders and terrestrial herbivores were dominant. The abundance of the endemic and endangered hooded grebe (Podiceps gallardoi Rumboll 1974) declined with the cover of macrophytes, which these birds use when establishing their colonies. In sum, this study revealed changes in the conditions of lakes Chapu and Cervecero and their plankton communities in response to hydrological shifts, with implications for waterbird assemblages and, thus, biodiversity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are in supplementary information.

References

  • Adami MA (2016) Estructura trófica de una laguna clave para la reproducción del Macá Tobiano (Podiceps gallardoi). Universidad Nacional de la Patagonia San Juan Bosco, Ushuaia

    Google Scholar 

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  PubMed  PubMed Central  Google Scholar 

  • Allende L, Tell G, Zagarese H, Torremorell A, Pérez G, Bustingorry J, Escaray R, Izaguirre I (2009) Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the Pampa plain (Argentina). Hydrobiologia 624:45–60

    Article  CAS  Google Scholar 

  • Avigliano L, Vinocour A, Chaparro G, Tell G, Allende L (2014) Influence of re-flooding on phytoplankton assemblages in a temperate wetland following prolonged drought. J Limnol. https://doi.org/10.4081/jlimnol.2014.838

    Article  Google Scholar 

  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2014) Climate change in Argentina: trends, projections, impacts and adaptation. WIRES Clim Change 6:151–169

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva

  • Beule L, Karlovsky P (2020) Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593

    Article  PubMed  PubMed Central  Google Scholar 

  • BirdLife International (2022) Species factsheet: Podiceps gallardoi. http://www.birdlife.org Accessed Nov 2022

  • Boldreghini P, Santolini R (1997) Effects of subemerged change on wintering waterfowl in the Comacchio area. Limnology and waterfowl, vol 43. Wetlands International Publications, Canberra, pp 107–112

    Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A et al (1976) A review of some problems in zooplankton production studies. Norw J Zool 24:419–456

    Google Scholar 

  • Bouvier T, del Giorgio PA, Gasol JM (2007) A comparative study of the cytometric characteristics of high and low nucleic acid bacterioplankton cells from different aquatic ecosystems. Environ Microbiol 9:2050–2066

    Article  CAS  PubMed  Google Scholar 

  • Bouvy M, Pagano M, Troussellier M (2001) Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil). Aquat Microb Ecol 25:215–227

    Article  Google Scholar 

  • Cabrera A (1976) Regiones fitogeográficas argentinas. In: I. Acme KW (ed) Enciclopedia Argentina de Agricultura y Jardinería. Buenos Aires

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso MML, Sousa W, Brasil J, Costa MRA, Becker V, Attayde JL, Menezes RF (2022) Prolonged drought increases environmental heterogeneity and plankton dissimilarity between and within two semiarid shallow lakes over time. Hydrobiologia 849(17–18):3995–4014

    Article  Google Scholar 

  • Chaparro G, Marinone MC, Lombardo RJ, Schiaffino MR, de Souza GA, O’Farrell I (2011) Zooplankton succession during extraordinary drought–flood cycles: a case study in a South American floodplain lake. Limnologica 41(4):371–381

    Article  Google Scholar 

  • Chaparro G, O’Farrell I, Hein T (2019) Multi-scale analysis of functional plankton diversity in floodplain wetlands: effects of river regulation. Sci Total Environ 667:338–347

    Article  CAS  PubMed  Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoffersen K, Riemann B, Hansen LR, Klysner A, Sørensen HB (1990) Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microb Ecol 20:253–272

    Article  CAS  PubMed  Google Scholar 

  • Costa MRA, Menezes RF, Sarmento H, Attayde JL, Sternberg LDSL, Becker V (2019) Extreme drought favors potential mixotrophic organisms in tropical semiarid reservoirs. Hydrobiologia 831:43–54

    Article  CAS  Google Scholar 

  • Craig SR (1987) The distribution and contribution of picoplankton to deep photosynthetic layers in some meromictic lakes. Acta Acad Abo 47:55–81

    Google Scholar 

  • Cyr H, Downing JA (1988) The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshw Biol 20:365–374

    Article  Google Scholar 

  • da Costa MRA, Attayde JL, Becker V (2016) Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778:75–89. https://doi.org/10.1007/s10750-015-2593-6

    Article  CAS  Google Scholar 

  • Dembowska EA (2022) Impacts of different hydrological conditions on phytoplankton communities in floodplain lakes of a regulated river (Lower Vistula, Poland). Hydrobiologia 849(11):2549–2567

    Article  CAS  Google Scholar 

  • Dinerstein E, Olson DM, Graham DJ, Webster AL, Primm SA, Bookbinder MP, Ledec G (1995) Una evaluación del estado de conservación de las eco-regiones terrestres de América Latina y el Caribe. World Bank, Washington, p 135

    Google Scholar 

  • Döll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res 38(4):8–1

    Article  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ et al (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388

    Article  Google Scholar 

  • Duggan IC, Green JD, Thompson K, Shiel RJ (2001) The influence of macrophytes on the spatial distribution of littoral rotifers. Freshw Biol 46:777–786

    Article  Google Scholar 

  • Dumont HJ, van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97

    Article  PubMed  Google Scholar 

  • Epele LB, Grech MG, Manzo LM, Macchi PA, Hermoso V, Miserendino ML et al (2021) Identifying high priority conservation areas for Patagonian wetlands biodiversity. Biodivers Conserv 30:1359–1374

    Article  Google Scholar 

  • Fernández Zenoff V, Siñeriz F, Farias ME (2006) Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl Environ Microbiol 72(12):7857–7863

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueiredo D, Castro B, Pereira M, Correia A (2012) Bacterioplankton community composition in Portuguese water bodies under a severe summer drought. Community Ecol 13(2):185–193

    Article  Google Scholar 

  • Fjeldså J (1986) Feeding ecology and possible life history tactics of the hooded grebe Podiceps gallardoi. Ardea 74:40–58

    Google Scholar 

  • Fox AD, Balsby TJ, Jørgensen HE, Lauridsen TL, Jeppesen E, Søndergaard M et al (2019) Effects of lake restoration on breeding abundance of globally declining common pochard (Aythya ferina L.). Hydrobiologia 830:33–44

    Article  CAS  Google Scholar 

  • Fox AD, Jørgensen HE, Jeppesen E, Lauridsen TL, Søndergaard M, Fugl K et al (2020) Relationships between breeding waterbird abundance, diversity, and clear water status after the restoration of two shallow nutrient-rich Danish lakes. Aquat Conserv Mar Freshw Ecosyst 30(2):237–245

    Article  Google Scholar 

  • Frenken T, Wierenga J, van Donk E, Declerck SA, de Senerpont Domis LN, Rohrlack T, Van de Waal DB (2018) Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol Oceanogr 63(6):2384–2393

    Article  Google Scholar 

  • Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagström A (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giacomo AS (2005) Areas importantes para la conservación de las aves en Argentina. In: Sitios prioritarios Para la conservación de la biodiversidad. Aves Argentinas/Asociación Ornitológica del Plata, Buenos Aires, Argentina

  • González-Gajardo A, Sepúlveda PV, Schlatter R (2009) Waterbird assemblages and habitat characteristics in wetlands: influence of temporal variability on species-habitat relationships. Waterbirds 32(2):225–233

    Article  Google Scholar 

  • Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S, Pitt A et al (2017) Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvani-grellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacterio-voraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudo-bacteriovoracaceae in the order Oligoflexale. Int J Syst Evol Microbiol 67(8):2555–2568

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DP, Mitchell SF (1996) An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317:209–220

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9. http://palaeoelectronica.org/2001_1/past/issue1_01.htm

  • Harry ISK, Ameh E, Coulon F, Nocker A (2016) Impact of treated sewage effluent on the microbiology of a small brook using flow cytometry as a diagnostic tool. Water Air Soil Pollut. https://doi.org/10.1007/s11270-015-2723-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Havens KE (2008) Cyanobacteria blooms: effects on aquatic ecosystems. Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 733–747

    Chapter  Google Scholar 

  • Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. https://doi.org/10.1038/ismej.2011.41

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillebrand H, Claus-Dieter D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Izaguirre I, Unrein F, Modenutti B, Allende L (2014) Photosynthetic picoplankton in Argentina lakes. Adv Limnol 65:343–357

    Article  Google Scholar 

  • Izaguirre I, Lancelotti J, Saad FJ, Porcel S, O’Farrell I, Marinone MC et al (2018) Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Glob Ecol Conserv 14:e00391. https://doi.org/10.1016/j.gecco.2018.e00391

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen E, Moss B, Bennion H, Carvalho L, De Meester L, Feuchtmayr H et al (2010) Interaction of climate change and eutrophication. In: Kernan M, Battarbee RW, Moss B (eds) Climate change impacts on freshwater ecosystems. Wiley-Blackwell, Chichester, pp 119–151

    Chapter  Google Scholar 

  • Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M, Hoffmann CC et al (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663:1–21. https://doi.org/10.1007/s10750-0100547-6

    Article  CAS  Google Scholar 

  • Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL et al (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73(s1):84–107

    Article  Google Scholar 

  • Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K, Noges T et al (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201–227

    Article  Google Scholar 

  • Jeppesen E, Pierson D, Jennings E (2021) Effect of extreme climate events on lake ecosystems. Water 13:282. https://doi.org/10.3390/w13030282

    Article  Google Scholar 

  • Jobbágy EG, Paruelo JM, León RJC (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Klamt AM, Hu K, Huang L, Chen X, Liu X, Chen G (2020) An extreme drought event homogenises the diatom composition of two shallow lakes in southwest China. Ecol Ind 108:1–11

    Article  Google Scholar 

  • Lake PS (2011) Drought and aquatic ecosystems: effects and responses. Wiley, Hoboken

    Book  Google Scholar 

  • Lancelotti JL, Pascual MA, Gagliardini A (2010) A dynamic perspective of shallow lakes of arid Patagonia as habitat for waterbirds. In: Meyer PL (ed) Ponds: formation characteristics and uses. Nova Science, Hauppauge, pp 83–102

    Google Scholar 

  • Lancelotti JL, Pessacg NL, Roesler IC, Pascual MA (2020) Climate variability and trends in the reproductive habitat of the critically endangered hooded grebe. Aquat Conserv Mar Freshw Ecosyst 30:554–564. https://doi.org/10.1002/aqc.3240

    Article  Google Scholar 

  • Lancelotti JL (2009) Caracterización limnológica de lagunas de la Provincia de Santa Cruz y efectos de la introducción de Trucha Arco iris (Oncorhynchus mykiss) sobre las comunidades receptoras. PhD thesis. Universidad Nacional del Comahue

  • Liboriussen L, Jeppesen E (2003) Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and turbid shallow lake. Freshw Biol 48:418–431

    Article  Google Scholar 

  • Llanos E, Behr S, González J, Colombani E, Buono G, Escobar JM (2016) Informe de las variaciones del Lago Colhue Huapi mediante sensores remotos y su relación con las precipitaciones. Technical report, Instituto Nacional de Tecnología Agropecuaria, Trelew, Argentina. pp 1–8

  • Lodge DM, Barko JW, Strayer D, Melack JM, Mittelbach GG, Howarth RW et al (1988) Spatial heterogeneity and habitat interactions in lake communities. In: Carpenter SR (ed) Complex interactions in lake communities. Springer, New York, pp 181–208

    Chapter  Google Scholar 

  • Lougheed VL, Mcintosh MD, Parker CA, Stevenson RJ (2008) Wetland degradation leads to homogenization of the biota at local and landscape scales. Freshw Biol 53(12):2402–2413

    Article  Google Scholar 

  • Marinone MC, Menu-Marque S, Añón Suárez D, Diéguez MC, Pérez P, De los Ríos P, et al (2006) UVR radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochem Photobiol 82:962–971

    Article  CAS  PubMed  Google Scholar 

  • Marker AFH, Nusch A, Rai H, Riemann B (1980) The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiologie Beihefte. Arch Hydrobiol Beih Ergebn Limnol 14:91–106

    CAS  Google Scholar 

  • McKinnon SL, Mitchell SP (1994) Eutrophication and black swan (Cygnus atratus Latham) populations: tests of two simple relationships. Hydrobiologia 279(280):163–170

    Article  Google Scholar 

  • Mendelsohn MB, Boarman WI, Fisher RN, Hathaway SA (2007) Diversity of terrestrial avifauna in response to distance from the shoreline of the Salton Sea. J Arid Environ 68(4):574–587

    Article  Google Scholar 

  • Menu-Marque S, Morrone JJ, Locascio de Mitrovich C (2000) Distributional patterns of the South American species of Boeckella (Copepoda: Centropagidae): a track analysis. J Crustac Biol 20(2):262–272

    Article  Google Scholar 

  • Mitchell SF, Wass RT (1997) Can we restore waterfowl populations by restoring aquatic macrophytes? Experiments in a New Zealand lake. In: Faragó S, Kerekes JJ (eds) Limnology and waterfowl, monitoring, modeling and management, proceedings of the symposium on limnology and waterfowl, Sopron, Hungary, November 1994. Wetlands International publication 43, Sopron, Hungary, pp 361–362

  • Mohamed ZA (2017) Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management—a review. Limnologica 63:122–132

    Article  CAS  Google Scholar 

  • Moreno-Ostos E, Paracuellos M, de Vicente I, Nevado JC, Cruz-Pizarro L (2008) Response of waterbirds to alternating clear and turbid water phases in two shallow Mediterranean lakes. Aquat Ecol 42:701–706

    Article  CAS  Google Scholar 

  • Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Farrell I, Izaguirre I, Chaparro G, Unrein F, Sinistro R, Pizarro H et al (2011) Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake. Aquat Sci 73:275–287

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn et al (2019) vegan: community ecology package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan

  • Olden JD, Rooney TP (2006) On defining and quantifying biotic homogenization. Glob Ecol Biogeogr 15:113–120

    Article  Google Scholar 

  • Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Mo Bot Gard 89:199–224

    Article  Google Scholar 

  • Olson RJ, Zettler ER, DuRand MD (1993) Phytoplankton analysis using flow cytometry. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, pp 175–186

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Orchard AE (1981) A revision of South American Myriophyllum (Haloragaceae) and its repercussions on some Australian and North American species. Brunonia 4(1):27–65

    Article  Google Scholar 

  • Ortubay S, Cussac VE, Battini M, Barriga J, Aigo J, Alonso M et al (2006) Is the decline of birds and amphibians in a steppe lake of northern Patagonia a consequence of limnological changes following fish introduction? Aquat Conserv Mar Freshw Ecosyst 16:93–105

    Article  Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiol 621:1–19

    Article  Google Scholar 

  • Paerl HW, Otten TG (2013) Blooms bite the hand that feeds them. Science 342:433–434

    Article  CAS  PubMed  Google Scholar 

  • Panarelli EA, Casanova S, Henry R (2008) The role of resting eggs in the recovery of zooplankton community in a marginal lake of the Paranapanema River (Sao Paulo, Brazil), after a long drought period. Acta Limnol Bras 20:75–90

    Google Scholar 

  • Paruelo JM, Beltrán A, Jobággy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • Pereyra FX, Fauqué L, González Día EF (2002) Geomorfología. In: Haller MJ (ed) Geología y recursos naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino. El Calafate. pp 325–352

  • Perotti MG, Diéguez MC, Jara FG (2005) Estado del conocimiento de humedales del norte Patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Rev Chil Hist Nat 78:723–737

    Article  Google Scholar 

  • Pessacg N, Flaherty S, Solman S, Pascual M (2020) Climate change in northern Patagonia: critical decrease in water resources. Theor Appl Climatol. https://doi.org/10.1007/s00704-020-03104-8

    Article  Google Scholar 

  • Pick FR (2016) Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria. Can J Fish Aquat Sci 73(7):1149–1158

    Article  CAS  Google Scholar 

  • Pilati A, Martínez JJ (2003) Relación longitud-peso de siete especies de Boeckella (Copepoda: Calanoida) de la República Argentina. Neotr Opica 49:55–61

    Google Scholar 

  • Porcel S, Saad JF, Sabio y García CA, Izaguirre I (2019) Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat Sci 81:51. https://doi.org/10.1007/s00027-019-0647-y

    Article  CAS  Google Scholar 

  • Porcel S, Chaparro G, Marinone MC, Saad JF, Lancelotti J, Izaguirre I (2020) The role of environmental, geographical, morphometric and spatial variables on plankton communities in lakes of the arid Patagonian plateaus. J Plankton Res 42(2):173–187. https://doi.org/10.1093/plankt/fbaa004

    Article  CAS  Google Scholar 

  • Pradeep Ram AS, Chaibi-Slouma S, Keshri J, Colombet J, Sime-Ngando T (2016) Functional responses of bacterioplankton diversity and metabolism to experimental bottom-up and top-down forcings. Microb Ecol 72:347–358

    Article  CAS  PubMed  Google Scholar 

  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PT et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94(3):849–873

    Article  PubMed  Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24(5):417–428

    Article  Google Scholar 

  • Riffel SK, Keas BE, Burton TM (2001) Area and habitat relationships of birds in great lakes coastal wet meadows. Wetlands 21:492–507

    Article  Google Scholar 

  • Roesler I (2016) Conservación del macá tobiano (Podiceps gallardoi): factores que afectan la viabilidad de sus poblaciones. Doctoral thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

  • Roesler I, Imberti S, Casañas H, Mahler B, Reboreda JC (2012) Hooded grebe Podiceps gallardoi population decreased by eighty per cent in the last twenty-five years. Bird Conserv Int 22:371–382

    Article  Google Scholar 

  • Roesler CI, de Miguel A, Martín LB, Giusti ME, Willcox R, Murphy K et al (2021) Alloparental behavior in three Neotropical Grebes. El Hornero 36:65–70

    Article  Google Scholar 

  • Ronneberger D (1998) Uptake of latex beads as size-model for food of planktonic rotifers. In: Rotifera VIII: a comparative approach. Proceedings Of The VIIIth International Rotifer Symposium, Collegeville, MN, 22–27 June 1997. Springer Netherlands, pp 445–449

  • RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston

    Google Scholar 

  • Rusanov AG, Bíró T, Kiss KT, Buczkó K, Grigorszky I, Hidas A et al (2022) Relative importance of climate and spatial processes in shaping species composition, functional structure and beta diversity of phytoplankton in a large river. Sci Total Environ 807:150891

    Article  CAS  PubMed  Google Scholar 

  • Ruttner-Kolisko A (1977) Suggestions for biomass calculation of plankton rotifers. Arch Hydrobiol Beih Ergebn Limnol 8:71–76

    Google Scholar 

  • Saad FJ, Porcel S, Lancelotti JL, O’Farrell I, Izaguirre I (2018) Both lake regime and fish introduction shape autotrophic planktonic communities of lakes from the Patagonian Plateau (Argentina). Hydrobiologia 831:133–145. https://doi.org/10.1007/s10750-018-3660-6

    Article  CAS  Google Scholar 

  • Sánchez ML, Lagomarsino L, Allende L, Izaguirre I (2015) Changes in the phytoplankton structure in a Pampean shallow lake in the transition from a clear to a turbid regime. Hydrobiologia 752:65–76

    Article  Google Scholar 

  • Schallenberg LA, Pearman JK, Burns CW, Wood SA (2021) Metabarcoding reveals lacustrine picocyanobacteria respond to environmental change through adaptive community structuring. Front Microbiol 12:757929. https://doi.org/10.3389/fmicb.2021.757929

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. TREE 8:275–279

    CAS  PubMed  Google Scholar 

  • Schiaffino MR, Gasol JM, Izaguirre I, Unrein F (2013) Picoplankton abundance and cytometric group diversity along a trophic and latitudinal lake gradient. Aquat Microb Ecol 68:231–250

    Article  Google Scholar 

  • Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54:2349–2358

    Article  CAS  Google Scholar 

  • Schindler DW, Vallentyne JR (2008) The algal bowl: overfertilization of the world’s freshwaters and estuaries. University of Alberta Press, Edmonton

    Book  Google Scholar 

  • Scordo F, Seitz C, Zilio M, Melo WD, Piccolo MC, Perillo GME (2018) Evolución de los recursos hídricos en el “Bajo de Sarmiento” (Patagonia Extra Andina): impactos naturales y antrópicos. Anu Inst Geociênc 40:106–117

    Article  Google Scholar 

  • Scott DA, Carbonell M (1986) A directory of Neotropical wetlands. IUCN Conservation Monitoring Centre, Gland

    Google Scholar 

  • Seitz C, Scordo F, Vitale AJ, Vélez MI, Perillo GM (2020) The effects of extreme drought events on the morphometry of shallow lakes: implications for sediment resuspension and littoral and pelagic zone distribution. J S Am Earth Sci 103:102743

    Article  Google Scholar 

  • Sharp JH, Peltzer ET, Alperin MJ, Cauwet G, Farrington JW, Fry B et al (1993) Procedures subgroup report. Mar Chem 41:37–49

    Article  CAS  Google Scholar 

  • Shaw JD, Spear D, Greve M, Chown SL (2010) Taxonomic homogenization and differentiation across Southern Ocean islands differ among insects and vascular plants. J Biogeogr 37:217–228

    Article  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, vol 1. CRC, Boca Raton, pp 43–112

    Google Scholar 

  • Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Vasconcelos V, Latała A (2017) Allelopathic activity of picocyanobacterium Synechococcus sp. on filamentous cyanobacteria. J Exp Mar Biol Ecol 496:16–21. https://doi.org/10.1016/j.jembe.2017.07.008

    Article  CAS  Google Scholar 

  • Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Latała A (2018) Allelopathic and bloom-forming picocyanobacteria in a changing world. Toxins 10:48. https://doi.org/10.3390/toxins10010048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starks E, Cooper R, Leavitt PR, Wissel B (2014) Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses. Glob Change Biol 20(4):1032–1042

    Article  Google Scholar 

  • Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colorful coexistence of red and green picocyanobacterial in lakes and seas. Ecol Lett 10:290–298

    Article  PubMed  Google Scholar 

  • Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346

    Article  Google Scholar 

  • Tessler M, Neumann JS, Afshinnekoo E, Pineda M, Hersch R, Velho LFM et al (2017) Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  • Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13

    Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

    Article  CAS  PubMed  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkomnung der quantitativen Phytoplankton-methodik. Mitt Int Ver Theor Amgew Limnol 9:1–38

    Google Scholar 

  • Valderrama JC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10:109–122

    Article  CAS  Google Scholar 

  • Venrick EL (1978) How many cells to count? In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 167–180

    Google Scholar 

  • Vörös L, Callieri C, Balogh KV, Bertoni R (1998) Freshwater picocyanobacterial along a trophic gradient and light quality range. Hydrobiologia 369(370):117–125

    Article  Google Scholar 

  • Wiedner C, Rücker J, Brüggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484. https://doi.org/10.1007/s00442-007-0683-5

    Article  PubMed  Google Scholar 

  • Williamson CE, Saros JE, Schindler DW (2008) Sentinels of change. Science 323(5916):887–888

    Article  Google Scholar 

  • Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033

  • Zorzal-Almeida S, Rodrigues Bartozek EC, Bicudo DC (2021) Homogenization of diatom assemblages is driven by eutrophication in tropical reservoirs. Environ Pollut 288:117778

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondo para la Investigación Científica y Tecnológica of Argentina (FONCYT PICT 2013-0794; PICT 2021-III-A-00090); Proyecto Macá Tobiano (Aves Argentinas/Ambiente Sur)—Programa Patagonia Aves Argentinas [Toyota Argentina, Nippon Car, Pan American Energy, CONTAIN/NERC-Latam, BirdLife International Preventing Extinction Programme (B. Olewine and S. and B. Thal), ICFC Canada, Toyota Environmental Activities Grant Programme, ZSL-EDGE, Secretaría de Ambiente de Santa Cruz, and the Whitley Fund For Nature]; Technical Advisory Agreement IEASA—CONICET—Macá Tobiano. We thank the staff and volunteers of Proyecto Macá Tobiano/Programa Patagonia (Aves Argentinas). We also thank the Dr. I. O’Farrell for their collaboration and V. Rago for field assistance, Dr. M.C. Diéguez for the DOC measurements, and D. Kachanovsky for assistance in processing the DNA data. We are grateful to the anonymous reviewers for their constructive comments, which greatly improved this article.

Author information

Authors and Affiliations

Authors

Contributions

SP performed the field work, was chiefly responsible for the microbial, phytoplankton and zooplankton analyses, performed data analyses, and wrote the manuscript. II and JL directed the project. MCM helped during the field campaigns and with zooplankton analyses. LF and IR were responsible for the aquatic bird censuses and gave valuable suggestions in this regard. MS carried out the BLAST analyses and helped with the bacterial DNA analyses. JL also participated in field trips and analyzed Landsat images with QGIS. CASG helped with bacterial DNA analyses and participated in two of the field campaigns. JS and II also helped with the field trips and with picoplankton and phytoplankton analyses. All authors were involved in the preparation and editing of this article.

Corresponding author

Correspondence to Sol Porcel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Supplementary figure 1: Rarefaction curve of the bacterial samples. (TIFF 130 KB)

27_2024_1083_MOESM2_ESM.xlsx

Supplementary file2 Supplementary material 1: Bacterial ASVs (a), phytoplankton (b), zooplankton (c) and waterbird (d) abundance in lakes Chapu and Cervecero in the period studied. (XLSX 234 KB)

Supplementary file3 Supplementary material 2: Outputs of ASV for taxonomic review obtained through BLAST. (XLSX 11 KB)

Supplementary file4 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcel, S., Saad, J.F., Sabio y García, C.A. et al. Structure of plankton and waterbird communities under water level fluctuations: two case studies in shallow lakes of the Patagonian steppe. Aquat Sci 86, 69 (2024). https://doi.org/10.1007/s00027-024-01083-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-024-01083-w

Keywords

Navigation