Skip to main content

Advertisement

Log in

Prolonged drought increases environmental heterogeneity and plankton dissimilarity between and within two semiarid shallow lakes over time

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Extreme weather events are likely to become more frequent in the future due to climate change, and how they will affect communities is a major challenge to ecologists. In this study, we assessed the effects of a prolonged drought on environmental heterogeneity (EH) components and phytoplankton and zooplankton α, β and γ diversities between and within two tropical semiarid shallow lakes. We hypothesize that prolonged droughts decrease phyto- and zooplankton α and γ diversities, increase between-lake and within-lake EH and accordingly increase plankton species replacement over time. To test this, we performed generalized least squares and general linear regressions to relate the effects of time and EH on the diversity components of phyto- and zooplankton assemblages and separately by their size groups (nano, micro- and mesoplankton). In agreement with our hypothesis, our results showed that between-lake \(\overline{\alpha }\) and γ diversities from phytoplankton and zooplankton (and their respective size classes) were generally negatively related to EH, whereas the plankton β diversity showed an opposite pattern at both within-lake and between-lake scales. In a dry future, actions to improve water quality and water use will be needed to reduce the risk of biodiversity loss and water deterioration within and across lakes over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Costa et al. (2015). SPI values below the grey line denote severe drought, whereas above the dashed line indicate normal drought

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  PubMed  Google Scholar 

  • Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen & N. G. Swenson, 2011. Navigating the multiple meanings of beta diversity : a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.

    Article  PubMed  Google Scholar 

  • Barbosa, L. G., C. A. Amorim, G. Parra, J. Laço Portinho, M. Morais, E. A. Morales & R. F. Menezes, 2020. Advances in limnological research in Earth’s drylands. Inland Waters 10: 429–437.

    Article  Google Scholar 

  • Bartón, K., 2020. MuMIn: Multi-Model Inference. R package version 1.43.17, https://cran.r-project.org/package=MuMIn.

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A., D. Orme, S. Villeger, J. De Bortoli, F. Leprieur & M. Logez, 2020. betapart: partitioning beta diversity into turnover and nestedness components. R Package Version 1(5): 2.

    Google Scholar 

  • Bini, L. M., V. L. Landeiro, A. Padial, T. Siqueira & J. Heino, 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95: 1569–1578.

    Article  PubMed  Google Scholar 

  • Bouvy, M., D. Falcão, M. Marinho, M. Pagano & A. Moura, 2000. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology 23: 13–27.

    Article  Google Scholar 

  • Bouvy, M., M. Pagano & M. Troussellier, 2001. Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (Northeast Brazil). Aquatic Microbial Ecology 25: 215–227.

    Article  Google Scholar 

  • Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.

    Article  CAS  Google Scholar 

  • Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. F. Dantas & V. L. M. Huszar, 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770: 145–164.

    Article  CAS  Google Scholar 

  • Brasil, J., J. B. O. Santos, W. Sousa, R. F. Menezes, V. L. M. Huszar & J. L. Attayde, 2020. Rainfall leads to habitat homogenization and facilitates plankton dispersal in tropical semiarid lakes. Aquatic Ecology 54: 225–241.

    Article  CAS  Google Scholar 

  • Calcagno, V., 2020. glmulti: Model Selection and Multimodel Inference Made Easy. R package version 1.0.8, https://cran.r-project.org/package=glmulti.

  • Caughlan, L., & K. L. Oakley, 2001. Cost considerations for long-term ecological monitoring. Ecological Indicators 1: 123–134.

  • Chao, A., C. Chiù, & T. C. Hsieh, 2012. Proposing a resolution to debates on diversity partitioning. Anne Chao , Chun-Huo Chiu and T . C . Hsieh. Wiley Stable. http://www.jstor.org/stable/41739262 REFERENCES Linked references are available on JSTOR for this artic. Ecology 93: 2037–2051.

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America 104: 17430–17434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, M. R. A., J. L. Attayde & V. Becker, 2016. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778: 75–89.

    Article  CAS  Google Scholar 

  • Costa, M. R. A., R. F. Menezes, H. Sarmento, J. L. Attayde, L. D. S. L. Sternberg & V. Becker, 2019. Extreme drought favors potential mixotrophic organisms in tropical semi-arid reservoirs. Hydrobiologia 831: 43–54.

    Article  CAS  Google Scholar 

  • Diniz, L. P., L. de S. M. Braghin, T. S. A. Pinheiro, P. A. M. de C. Melo, C. C. Bonecker, & M. de Melo Júnior, 2021. Environmental filter drives the taxonomic and functional β-diversity of zooplankton in tropical shallow lakes. Hydrobiologia 848: 1881–1895.

    Article  Google Scholar 

  • Diniz, L. P., D. K. Petsch & C. C. Bonecker, 2021. Zooplankton β diversity dynamics and metacommunity structure depend on spatial and temporal scales in a Neotropical floodplain. Freshwater Biology. https://doi.org/10.1111/fwb.13719.

    Article  Google Scholar 

  • de Moura, C. & C. F. L., J. F. Oliveira, J. L. C. Novaes, R. S. da Costa, D. D. A. de Araújo, & D. Peretti, 2018. The impact of a biomanipulation experiment on the ichthyofauna diet from a neotropical reservoir in Brazilian semiarid. Acta Limnologica Brasiliensia 30: e107.

  • dos Bertoncin, A. P. & G. D. Pinha, M. T. Baumgartner, & R. P. Mormul, 2019. Extreme drought events can promote homogenization of benthic macroinvertebrate assemblages in a floodplain pond in Brazil. Hydrobiologia 826: 379–393.

  • Dussart, B. H., 1984. Some crustacean Copepoda from Venezuela. Hydrobiologia 113: 25–67.

  • Elmoor-Loureiro, L. M. A., 1997. Manual de identificação de cladóceros límnicos do Brasil. Brasília-DF.

  • Fox, J. & S. Weisberg, 2019. An R Companion to Applied Regression, 3rd ed. Sage, Thousand Oaks, CA:

    Google Scholar 

  • Gianuca, A. T., S. A. J. Declerck, P. Lemmens & L. De Meester, 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of ? diversity. Ecology 98: 525–533.

    Article  PubMed  Google Scholar 

  • Harrison, S., K. F. Davies, H. D. Safford & J. H. Viers, 2006. Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. Journal of Ecology 94: 110–117.

    Article  Google Scholar 

  • Heino, J., M. Grönroos, J. Ilmonen, T. Karhu, M. Niva & L. Paasivirta, 2013. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science 32: 142–154.

    Article  Google Scholar 

  • Heino, J., A. S. Melo & L. M. Bini, 2015. Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology 60: 223–235.

    Article  Google Scholar 

  • Huang, J., H. Yu, X. Guan, G. Wang & R. Guo, 2015. Accelerated dryland expansion under climate change. Nature Climate Change 6: 166–171.

    Article  Google Scholar 

  • IPCC, 2014. Climate change, adaptation, and vulnerability. Organization & Environment 24: 1–44.

    Google Scholar 

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change In Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (eds), Cambridge University Press, Cambridge.

  • Jackson, M. C., O. L. F. Weyl, F. Altermatt, I. Durance, N. Friberg, A. J. Dumbrell, J. J. Piggott, S. D. Tiegs, K. Tockner, C. B. Krug, P. W. Leadley, & G. Woodward, 2016. Recommendations for the Next Generation of Global Freshwater Biological Monitoring Tools. Advances in Ecological Research 55: 615–636.

  • Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.

    Article  Google Scholar 

  • Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nöges, P. Nöges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Article  Google Scholar 

  • Jyrkänkallio-Mikkola, J., M. Siljander, V. Heikinheimo, P. Pellikka & J. Soininen, 2018. Tropical stream diatom communities – the importance of headwater streams for regional diversity. Ecological Indicators 95: 183–193.

    Article  Google Scholar 

  • Klamt, A. M., K. Hu, L. Huang, X. Chen, X. Liu & G. Chen, 2020. An extreme drought event homogenises the diatom composition of two shallow lakes in southwest China. Ecological Indicators 108: 1–11.

    Article  Google Scholar 

  • Koleff, P., K. J. Gaston & J. J. Lennon, 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72: 367–382.

    Article  Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk, begründet von Max Voigt. Überordnung Monogononta. Gebrüder Borntraeger, Berlin, Stuttgart.

  • Korhonen, J. J., J. Soininen & H. Hillebrand, 2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91: 508–517.

    Article  PubMed  Google Scholar 

  • Kutner, M. H., C. J. Nachtsheim & J. Neter, 2004. Applied Linear Regression Models, Homewood, Illinois:

    Google Scholar 

  • Langer, T. A., B. A. Murry, K. L. Pangle & D. G. Uzarski, 2016. Species turnover drives β-diversity patterns across multiple spatial and temporal scales in Great Lake Coastal Wetland Communities. Hydrobiologia 777: 55–66.

    Article  Google Scholar 

  • Lawton, J. H., 1999. Are there general laws in parasite ecology? Oikos 84: 177–192.

  • Ledger, M. E., L. E. Brown, F. K. Edwards, A. M. Milner & G. Woodward, 2013. Drought alters the structure and functioning of complex food webs. Nature Climate Change 3: 223–227.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lima, M. S., F. Schneck, N. Haig They, L. Oliveira Crossetti, J. E. Bohnenberger, K. D. McMahon & D. Da Motta Marques, 2020. Turnover is replaced by nestedness with increasing geographical distance in bacterial communities of coastal shallow lakes. Marine and Freshwater Research 71: 1086–1098.

    Article  Google Scholar 

  • Maloufi, S., A. Catherine, D. Mouillot, C. Louvard, A. Couté, C. Bernard & M. Troussellier, 2016. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshwater Biology 61: 633–645.

    Article  Google Scholar 

  • Mazerolle, M. J., 2020. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3–1.

  • McCreadie, J. W. & P. H. Adler, 2018. Patterns of regional beta diversity in a widespread group of North American aquatic insects. Freshwater Science 37: 631–639.

    Article  Google Scholar 

  • McKee, T. B., N. J. Doesken, & J. Kleist, 1993. The relationship of drought frequency and duration to time scales Pro-ceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston. pp. 179–183.

  • Menezes, R. F., J. L. Attayde & F. Rivera Vasconcelos, 2010. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshwater Biology 55: 767–779.

    Article  CAS  Google Scholar 

  • Nabout, J. C., I. S. De Nogueira, L. G. De Oliveira & R. R. Morais, 2007. Phytoplankton diversity (alpha, beta, and gamma) from the Araguaia River tropical floodplain lakes (central Brazil). Hydrobiologia 575: 455–461.

    Article  Google Scholar 

  • Özen, A., B. Karapinar, I. Kucuk, E. Jeppesen & M. Beklioglu, 2010. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646: 61–72.

    Article  CAS  Google Scholar 

  • Pace, M. & J. D. Orcutt, 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnology and Oceanography 26: 822–830.

    Article  Google Scholar 

  • Parmar, T. K., D. Rawtani & Y. K. Agrawal, 2016. Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science 9: 110–118.

    Article  CAS  Google Scholar 

  • PBMC, 2014. Base científica das mudanças climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas. Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas [Ambrizzi, T., Araujo, M. (eds.)]. Rio de Janeiro. http://www.pbmc.coppe.ufrj.br/documentos/MCTI_PBMC_SumarioExecutive-4_Finalizado.pdf.

  • Peláez, O. E., F. M. Azevedo & C. S. Pavanelli, 2017. Environmental heterogeneity explains species turnover but not nestedness in fish assemblages of a Neotropical basin. Acta Limnologica Brasiliensia 29: e117.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, & R Core Team, 2020. _nlme: Linear and Nonlinear Mixed Effects Models_.R package version 3.1–150. https://CRAN.R-project.org/package=nlme.

  • R Core Team, 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/.

  • Ribeiro-Neto, J. D., X. Arnan, M. Tabarelli & I. R. Leal, 2016. Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodiversity and Conservation 25: 943–956.

    Article  Google Scholar 

  • Ricklefs, R. E., 2008. Disintegration of the ecological community. American Naturalist 172: 741–750.

    Article  PubMed  Google Scholar 

  • Rocha Junior, C. A. N., M. R. A. Costa, R. F. Menezes, J. L. Attayde & V. Becker, 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnologica Brasiliensia 30: 1–10.

    Article  CAS  Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Arch Hydrobiol Beih Ergeb Limnol 8: 71–76.

    Google Scholar 

  • Sendacz, Ms., & E. Kubo, 1982. Copepoda (calanoide and Cyclopoida) from reservoirs of São Paulo State. Boletim do Instituto de Pesca 9: 51–89.

  • Sieburth, J. M., V. Smetacek, & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography 23: 1256–1263.

  • Simberloff, D., 2004. Community ecology: is it time to move on? The American Naturalist 163: 787–799.

    Article  PubMed  Google Scholar 

  • Simões, N. R., F. A. Lansac-tôha & C. C. Bonecker, 2013. Drought disturbances increase temporal variability of zooplankton community structure in floodplains. International Review of Hydrobiology 98: 24–33.

    Article  Google Scholar 

  • Soininen, J., R. McDonald & H. Hillebrand, 2007. The distance decay of similarity in ecological communities. Ecography 30: 3–12.

    Article  Google Scholar 

  • Sousa, W., J. L. Attayde, E. S. Rocha & E. M. Eskinazi-Sant’Anna, 2008. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. Journal of Plankton Research 30: 699–708.

    Article  Google Scholar 

  • Stemberg, R., 1979. A guide to Rotifers of the Laurentian Great Lakes. Washington, DC.

  • Sutherland, W. J., R. P. Freckleton, H. C. J. Godfray, S. R. Beissinger, T. Benton, D. D. Cameron, Y. Carmel, D. A. Coomes, T. Coulson, M. C. Emmerson, R. S. Hails, G. C. Hays, D. J. Hodgson, M. J. Hutchings, D. Johnson, J. P. G. Jones, M. J. Keeling, H. Kokko, W. E. Kunin, X. Lambin, O. T. Lewis, Y. Malhi, N. Mieszkowska, E. J. Milner-Gulland, K. Norris, A. B. Phillimore, D. W. Purves, J. M. Reid, D. C. Reuman, K. Thompson, J. M. J. Travis, L. A. Turnbull, D. A. Wardle & T. Wiegand, 2013. Identification of 100 fundamental ecological questions. Journal of Ecology 101: 58–67.

    Article  Google Scholar 

  • Tamme, R., I. Hiiesalu, L. Laanisto, R. Szava-Kovats & M. Pärtel, 2010. Environmental heterogeneity, species diversity and co-existence at different spatial scales. Journal of Vegetation Science 21: 796–801.

    Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Tuomisto, H., 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33: 2–22.

    Article  Google Scholar 

  • Tuomisto, H., 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33: 23–45.

    Article  Google Scholar 

  • Ulrich, W. & N. J. Gotelli, 2010. Null model analysis of species associations using abundance data. Ecology 91: 3384–3397.

    Article  PubMed  Google Scholar 

  • Vellend, M., 2010. Conceptual synthesis in community ecology. Q Rev Biol 85: 183–206.

    Article  PubMed  Google Scholar 

  • Vellend, M., 2016. The Theory of Ecological Communities, Princeton University Press, Princeton:

    Google Scholar 

  • Wetzel, C. E., D. D. C. Bicudo, L. Ector, E. A. Lobo, J. Soininen, V. L. Landeiro & L. M. Bini, 2012. Distance decay of similarity in neotropical diatom communities. PLoS ONE 7: 10–11.

    Article  CAS  Google Scholar 

  • Yang, Z., X. Liu, M. Zhou, D. Ai, G. Wang, Y. Wang, C. Chu & J. T. Lundholm, 2015. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Scientific Reports 5: 1–7.

    Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R, Springer, New York:

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to all employees of the Ecological Station of Seridó (ESEC-RN), Edson Santana, Leonardo Teixeira, Pablo Rubim, Gabriela Moura, Jurandir Mendonça, Danyhelton Dantas, Viviane Medeiros and Fabiana Araújo, for fieldwork and laboratory assistance. We would like also to thank Carolina Angélica Araújo de Azevedo for valuable manuscript assistance and Daniel Jadson Noronha Lima for artwork assistance. We are grateful to the Coordination for the Improvement of Higher Educational Personnel (CAPES) for grating a Ph.D. (Rocha, WS) and a Postdoc scholarship (Menezes, RF) during the project execution.

Funding

The Brazilian Council for Scientific and Technological Development (CNPq—process number: 372170/2014-5), ICMBio (Institute Chico Mendes of Biodiversity Conservation) and the Coordination for the Improvement of Higher Educational Personnel (CAPES/PNPD—project number: 2304/2011) financially supported this work.

Author information

Authors and Affiliations

Authors

Contributions

JLA and VB contributed to the study conception and sampling design. MMLC, WSR, MRAC, JLA and VB conducted the fieldwork over the 24-month study period. MMLC run the statistical analyses and made most figures and tables. VB and MRAC analysed the phytoplankton samples and WSR analysed the zooplankton samples. RFM, JB and MMLC contributed with theoretical background. RFM and MMLC wrote the first draft of the manuscript and all previous authors contributed to the subsequent versions of the draft.

Corresponding author

Correspondence to Rosemberg F. Menezes.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agree with the content presented in the manuscript in question.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Sidinei M. Thomaz

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2209 kb)

Supplementary file2 (DOCX 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, M.M.L., Sousa, W., Brasil, J. et al. Prolonged drought increases environmental heterogeneity and plankton dissimilarity between and within two semiarid shallow lakes over time. Hydrobiologia 849, 3995–4014 (2022). https://doi.org/10.1007/s10750-022-04882-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04882-0

Keywords

Navigation