Skip to main content

Advertisement

Log in

Multi-year trends and determinants of the hydrochemistry of high mountain lakes in the Western Italian Alps

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

High mountain lakes (HML) provide essential ecosystem services, have tremendous conservation and aesthetic value, and are good model ecosystems to study the ecological consequences of global change. Multi-year (2008–2017) chemical data from 25 HML from the Gran Paradiso National Park (Western Italian Alps) were used to address two specific objectives: (1) assess the major determinants of HML hydrochemistry; (2) identify any multi-years trend attributable to global change. Local trends in climatic variables and NO3, NH4+, and SO42− deposition were evaluated over the same period as possible drivers of lake chemistry. We were able to explain most of the variance associated to the major ion concentration, but much less of that associated with nutrient content and with variables related to atmospheric deposition (e.g. Cl, Na+, inorganic N). The explanation of which probably requires studies at a regional scale. As a whole, lake chemistry depends on the interplay of several environmental variables, including the impact of human activities (i.e. point source of organic pollutants). Catchment geology and vegetation cover influence several variables related to weathering processes, which show a general increase over the last 10 years. This general trend can be attributable to climatic variability enhancing weathering processes in lake catchments. However, a concomitant decrease of precipitation amount and the deposition of acidifying compounds may have contributed to the observed trends. Meteorological data were almost unrelated to HML hydrochemistry, suggesting that lake chemical composition would depend more strongly on long-term climatic variations rather than on short-term meteorological events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • APHA, AWWA, WEF (2005) Standard Methods for the examination of water and wastewater (Method 4110 B). American Public Health Association, Washington

    Google Scholar 

  • Bartoń K (2011) MuMIn. Multi-model inference. R package version 1.6.5. https://cran.r-project.org/web/packages/MuMIn/index.html. Accessed 30 June 2018

  • Battarbee RW, Kernan M, Rose N (2009) Threatened and stressed mountain lakes of Europe: assessment and progress. Aquat Ecosyst Health Manag 12:118–128

    Article  CAS  Google Scholar 

  • Bellati A, Tiberti R, Cocca W, Galimberti A, Casiraghi M, Bogliani G, Galeotti P (2014) A dark shell hiding large variability: a molecular insight into the evolution and conservation of melanic Daphnia populations in the Alps. Zool J Lin Soc 171:697–715

    Article  Google Scholar 

  • Beniston M, Stoffel M (2014) Assessing the impacts of climatic change on mountain water resources. Sci Tot Environ 493:1129–1137

    Article  CAS  Google Scholar 

  • Camarero L (2017) Atmospheric chemical loadings in the high mountain: current forcing and legacy pollution. In: Catalan J, Ninot JM, Aniz MM (eds) High mountain conservation in a changing world. Springer, Cham, pp 325–341

    Chapter  Google Scholar 

  • Camarero L, Rogora M, Mosello R, Anderson J, Barbieri A, Botev I, Kernan M, Kopacek J, Korhola A et al (2009) Regionalisation of chemical variability in European mountain lakes. Freshw Biol 54:2452–2469

    Article  CAS  Google Scholar 

  • Catalan J, Curtis CJ, Kernan M (2009) Remote European mountain lake ecosystems: regionalisation and ecological status. Freshw Biol 54:2419–2432

    Article  CAS  Google Scholar 

  • Crawley MJ (2012) The R book. Wiley, Hoboken

    Book  Google Scholar 

  • Curtis CJ, Botev I, Camarero L, Catalan J, Cogalniceanu D, Hughes M, Kernan M et al (2005) Acidification in European mountain lake districts: a regional assessment of critical load exceedances. Aquat Sci 67:237–251

    Article  CAS  Google Scholar 

  • Derlet RW, Richards JR, Tanaka LL, Hayden C, Ger KA, Goldman CR (2012) Impact of summer cattle grazing on the Sierra Nevada watershed: aquatic algae and bacteria. J Environ Publ Health. https://doi.org/10.1155/2012/760108

    Article  Google Scholar 

  • Ferretti M, Marchetto A, Arisci S, Bussotti F, Calderisi M, Carnicelli S, Cecchini G, Fabbio G, Bertini G, Matteucci G, De Cinti B, Salvati L, Pompei E (2014) On the tracks of Nitrogen deposition effects on temperate forests at their southern European range—an observational study from Italy. Glob Change Biol 20:3423–3438

    Article  Google Scholar 

  • Fowler D, Smith R, Muller J, Cape JN, Sutton M, Erisman JW, Fagerli H (2007) Long term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities. In: Brimblecombe P, Hara H, Houle D, Novak M (eds) Acid Rain-deposition to recovery (). Springer, Dordrecht, pp 41–47

    Chapter  Google Scholar 

  • Fresenius W, Quentin KE, Schneider W (1988) Water analysis. Springer, Berlin

    Book  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titration II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  Google Scholar 

  • Houle D, Couture S, Gagnon C (2010) Relative role of decreasing precipitation sulfate and climate on recent lake recovery. Global Biogeochem Cycle 24:GB4029

    Article  Google Scholar 

  • Irsa-Cnr APAT (2003) Metodi analitici per le acque. 4020 Anioni in cromatografia ionica. APAT, Roma

    Google Scholar 

  • Kamenik C, Schmidt R, Kum G, Psenner R (2001) The influence of catchment characteristics on the water chemistry of mountain lakes. Arc Antarc Alp Res 33:404–409

    Article  Google Scholar 

  • Kernan M, Ventura M, Brancelj A, Clarke G, Raddum G, Stuchlík E, Catalan J (2009) Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. Freshw Biol 54:2470–2493

    Article  CAS  Google Scholar 

  • Kokelj SV, Zajdlik B, Thompson MS (2009) The impacts of thawing permafrost on the chemistry of lakes across the subarctic borealtundra transition, Mackenzie Delta region, Canada. Permafr Periglac Process 20:185–199

    Article  Google Scholar 

  • Kopáček J, Stuchlík E, Straškrabová V, Pšenáková P (2000) Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshw Biol 43:369–383

    Article  Google Scholar 

  • Kopáček J, Kaňa J, Bičárová S, Fernandez IJ, Hejzlar J, Kahounová M et al (2016) Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ Sci Technol 51:159–166

    Article  Google Scholar 

  • Lacoul P, Freedman B (2005) Physical and chemical limnology of 34 lentic waterbodies along a tropical-to-alpine altitudinal gradient in Nepal. Int Rev Hydrobiol 90:254–276

    Article  CAS  Google Scholar 

  • Lepori F, Keck F (2012) Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio 41:235–246

    Article  CAS  Google Scholar 

  • Marchetto A, Barbieri A, Mosello R, Tartari GA (1994) Acidification and weathering processes in high mountain lakes in Southern Alps. Hydrobiologia 274:75–81

    Article  CAS  Google Scholar 

  • Marchetto A, Mosello R, Psenner R, Bendetta G, Boggero A, Tait D, Tartari GA (1995) Factors affecting water chemistry of Alpine lakes. Aquat Sci 57:81–89

    Article  Google Scholar 

  • Marchetto A, Mosello R, Rogora M, Manca M, Boggero A, Morabito G et al (2004) The chemical and biological response of two remote mountain lakes in the Southern Central Alps (Italy) to twenty years of changing physical and chemical climate. J Limnol 63:77–89

    Article  Google Scholar 

  • Mast MA, Turk JT, Clow DW, Campbell DH (2011) Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado. Biogeochemistry 103:27–43

    Article  CAS  Google Scholar 

  • Monteith D, Henrys P, Lindsay B, Smith R, Morecroft M, Scott T et al (2016) Trends and variability in weather and atmospheric deposition at UK Environmental Change Network sites (1993-2012). Ecol Indicat 68:21–35

    Article  CAS  Google Scholar 

  • Mosello R, Marchetto A, Tartari GA, Bovio M, Castello P (1991) Chemistry of alpine lakes in Aosta Valley (North Italy) in relation to the watershed characteristics and to acid deposition. Ambio 20:7–12

    Google Scholar 

  • Muri G, Brancelj A (2003) Seasonal water chemistry variations in three Slovenian mountain lakes. Acta Chim Slov 50:137–148

    CAS  Google Scholar 

  • Neal C (2001) Alkalinity measurements within natural waters: towards a standardised approach. Sci Tot Environ 265:99–113

    Article  CAS  Google Scholar 

  • Notarnicola C, Duguay M, Moelg N, Schellenberger T, Tetzlaff A, Monsorno R et al (2013a) Snow cover maps from MODIS images at 250 m resolution, Part 1: algorithm description. Remote Sens 5:110–126

    Article  Google Scholar 

  • Notarnicola C, Duguay M, Moelg N, Schellenberger T, Tetzlaff A, Monsorno R et al (2013b) Snow cover maps from MODIS images at 250 m resolution, part 2: validation. Remote Sens 5:1568–1587

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al (2013) Package ‘vegan’. Community ecology package, version, 2(9). https://cran.r-project.org/web/packages/vegan/index.html. Accessed 30 June 2018

  • Preston DL, Caine N, McKnight DM, Williams MW, Hell K, Miller MP et al (2016) Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophys Res Lett 43:5353–5360

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 30 June 2018

  • Rogora M, Mosello R, Arisci S (2003) The effect of climate warming on the hydrochemistry of alpine lakes. Water Air Soil Pollut 148:347–361

    Article  CAS  Google Scholar 

  • Rogora M, Mosello R, Arisci S, Brizzio MC, Barbieri A, Balestrini R et al (2006) An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562:17–40

    Article  CAS  Google Scholar 

  • Rogora M, Massaferro J, Marchetto A, Tartari G, Mosello R (2008) The water chemistry of some shallow lakes in Northern Patagonian and their nitrogen status in comparison with remote lakes in different regions of the globe. J Limnol 67:75–86

    Article  Google Scholar 

  • Rogora M, Colombo L, Lepori F, Marchetto A, Steingruber S, Tornimbeni O (2013) Thirty years of chemical changes in alpine acid-sensitive lakes in the Alps. Water Air Soil Pollut 224:1746–1765

    Article  Google Scholar 

  • Rogora M, Frate L, Carranza ML, Freppaz M, Stanisci A, Bertani I et al (2018) Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci Tot Environ 624:1429–1442

    Article  CAS  Google Scholar 

  • Salerno F, Rogora M, Balestrini R, Lami A, Tartari GA, Thakuri S et al (2016) Glacier melting increases the solute concentrations of Himalayan Glacial Lakes. Environ Sci Technol 50:9150–9160

    Article  CAS  Google Scholar 

  • Schindler DE, Knapp RA, Leavitt PR (2001) Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems 4:308–321

    Article  CAS  Google Scholar 

  • SEAL (2004) Applications QuAAtro Method No Q-038-04 Rev, 1. Silicate in water and seawater. Mequon, Wisconsin

    Google Scholar 

  • Simpson D, Benedictow A, Berge H, Bergstrom R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyıri A, Richter C, Semeena VS, Tsyro S, Tuovinen JP, Valdebenito A, Wind P (2012) The EMEP MSC-W chemical transport model—technical description. Atmos Chem Phys 12:7825–7865

    Article  CAS  Google Scholar 

  • Sommaruga R, Kandolf G (2014) Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates. Sci Rep 4:4133

    Google Scholar 

  • Sommaruga-Wögrath S, Koinig KA, Schmidt R, Sommaruga R, Tessadri R, Psenner R (1997) Temperature effects on the acidity of remote alpine lakes. Nature 387:64–67

    Article  Google Scholar 

  • Stoeck T, Bruemmer F, Foissner W (2007) Evidence for local ciliate endemism in an alpine anoxic lake. Microb Ecol 54:478–486

    Article  Google Scholar 

  • Tartari GA, Tartari G, Mosello R (1998) Water chemistry of high altitude lakes in the Khumbu and Imja Kola Valleys (Nepalese Himalayas). Mem Ist Ital Idrobiol 57:51–76

    Google Scholar 

  • Tiberti R, Tartari G, Marchetto A (2010) Geomorphology and hydrochemistry of 12 Alpine lakes in the Gran Paradiso National Park, Italy. J Limnol 69:242–256

    Article  Google Scholar 

  • Tiberti R, Metta S, Austoni M, Callieri C, Morabito G, Marchetto A et al (2013) Ecological dynamics of two remote Alpine lakes during ice-free season. J Limnol 72:401–416

    Article  Google Scholar 

  • Tiberti R, Rogora M, Tartari G, Callieri C (2014) Ecological impact of transhumance on the trophic state of alpine lakes in Gran Paradiso National Park. Knowl Manag Aquat Ecosyst 415:05

    Article  Google Scholar 

  • Tiberti R, Bogliani G, Brighenti S, Iacobuzio R, Liautaud K, Rolla M et al (2019) Recovery of high mountain Alpine lakes after the eradication of introduced brook trout Salvelinus fontinalis using non-chemical methods. Biol Inv. https://doi.org/10.1007/s10530-018-1867-0

    Article  Google Scholar 

  • Toro M, Granados I, Robles S, Montes C (2006) High mountain lakes of the Central Range (Iberian Peninsula): regional limnology and environmental changes. Limnetica 25:217–252

    Google Scholar 

  • Valderrama JC (1977) Methods used by the Hydrographic Department of the National Board of Fisheries. Goteborg, Sweden

    Google Scholar 

  • Valderrama JC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10:109–122

    Article  CAS  Google Scholar 

  • Van Colen WR, Mosquera P, Vanderstukken M, Goiris K, Carrasco MC, Decaestecker E et al (2017) Limnology and trophic status of glacial lakes in the tropical Andes (Cajas National Park, Ecuador). Freshw Biol 62:458–473

    Article  Google Scholar 

  • Van Colen W, Mosquera PV, Hampel H, Muylaert K (2019) Link between cattle and the trophic status of tropical high mountain lakes in páramo grasslands in Ecuador. Lakes Reserv Res Manag 22:22. https://doi.org/10.1111/lre.12237

    Article  Google Scholar 

  • Williams MW, Knauf M, Caine N, Liu F, Verplanck PL (2006) Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafr Periglac Process 17:13–33

    Article  Google Scholar 

  • Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254

    Article  Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effect models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the GPNP authorities and in particular the personnel of the Research and Biodiversity Service and the GPNP wardens for their commitment to research. We thank Prof. Giuseppe Bogliani (University of Pavia) and many students and field assistants. We thank Teteh Champion for English proofreading and editing suggestions. Funding and logistic support for this research was provided by the Gran Paradiso National Park within the framework of the EU FP7 ACQWA Project (Assessment of Climatic change and impacts on the Quantity and quality of Water; Grant Agreement no. 212250) and the LIFE + BIOAQUAE Project (Biodiversity Improvement of Aquatic Alpine Ecosystems; LIFE11 BIO/IT/000020). Supplemental funding for the chemical analyses and dashboard work was kindly provided by CNR IRSA and the University of Pavia (Grant Number 105355 issued to Rocco Tiberti). Monitoring of atmospheric deposition at the ICP FOREST site PIE1—Val Sessera has been partially funded by the Italian Forestry Service (Corpo Forestale dello Stato, Servizio CONECOFOR) and by the European Union under the Regulation (EC) no 2152/2003 concerning monitoring of forests and environmental interactions in the community (Forest Focus) and the project LIFE 07 ENV/D/000218 “Further Development and Implementation of an EU-level Forest Monitoring System (FutMon)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Tiberti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Understanding mountain lakes in a changing world”.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiberti, R., Nelli, L., Marchetto, A. et al. Multi-year trends and determinants of the hydrochemistry of high mountain lakes in the Western Italian Alps. Aquat Sci 81, 54 (2019). https://doi.org/10.1007/s00027-019-0650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-019-0650-3

Keywords

Navigation