Skip to main content
Log in

Biogeochemical Changes in Arctic Lakes at Climate Warming: Regional Features

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The problem of eutrophication of the waters in remote Arctic regions is discussed as a consequence of climate warming and global dispersion of phosphorus. The analysis of long-term monitoring results of water quality from 1990 through 2018 (once every four to five years) provides evidence that the total concentrations of phosphorus and nitrogen, as well as organic matter, had increased by the last decade, which is confirmed by reliable relationships with temperature conditions. The fluxes of phosphorus into lakes from drainage areas were calculated using V.V. Bouillon’s model and turned out to grow during the last decade. The trophic status indicator (TSI) of the lakes shows that the number of oligotrophic lakes has decreased and the number of meso- and eutrophic ones has increased even where no influence of any anthropogenic factors was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Abid and S. S. Gill, Eutrophication: Causes, Consequences and Control (Springer, Dordrecht, 2014), Vol. 2.

    Google Scholar 

  2. A. F. Alimov, Elements of Theory of Water Ecosystem Functioning (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  3. A. F. Alimov and M. S. Golubkov, “Eutrophication of basins and structure of hydrobiont community,” Biol. Vnutr. Vod 3, 5–11 (2014).

    Google Scholar 

  4. Archive of Reference-information Portal Weather and Climate: Murmansk Oblast. (http://www.pogodaiklimat. ru/ar-chive.php?id=ru&region=51) (2019).

  5. Atlas of the Murmansk Oblast, Ed. by A. G. Durov (Moscow, 1971) [in Russian].

    Google Scholar 

  6. C. K.G. Bakker, “Nutrients and biota in a lake system before and after restoration; a data analysis of the Swedish eutrophication case study Växjösjön,” Master Thesis in Sustainable Development (Uppsala University, 2021).

  7. I. V. Baranov, Limnological Types of the USSR Lakes (Gidrometeoizdat, Moscow, 1961) [in Russian].

    Google Scholar 

  8. O. I. Belykh, A. S. Gladkikh, E. G. Sorokovikova, I. V. Tikhonova, S. A. Potapov, and T. V. Butina, “Saxitoxine-producing cyanobacteria in Lake Baikal,” Sibirsk. Ekol. Zh. 22 (2), 229–237 (2015).

    Google Scholar 

  9. V. V. Bulon, “Does natural eutrophication of lakes occur?,” Water Res. 25 (6), 701–706 (1998).

    Google Scholar 

  10. V. V. Bul’on, “Biotic flow of matter and energy in the water and its catchment area system,” Usp. Sovremen. Biol. 138 (5), 503–515 (2018).

    Google Scholar 

  11. R. E. Carlson, “A trophic state index for lakes,” Limnol. Oceanogr. 22 (1), 361–369 (1977).

    Article  Google Scholar 

  12. D. G.F. Cunha, S. P. Casali, Falco P. B. De, I. Thornhill, and S. A. Loiselle, “The contribution of volunteer-based monitoring data to the assessment of harmful phytoplankton blooms in Brazilian urban streams,” Sci. Total Environ. 584, 586–594 (2017).

    Article  Google Scholar 

  13. Yu. S. Datsenko, Eutrophication of Water Reservoirs. HydrologicalHydrochemical Aspects (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  14. Wit H. A. De, S. Valinia, G. A. Weyhenmeyer, M. N. Futter, P. Kortelainen, K. Austnes, D. O. Hessen, A. Räike, H. Laudon, and J. Vuorenmaa, “Current browning of surface waters will be further promoted by wetter climate,” Environ. Sci. Technol. Lett. 3, 430–5 (2016).

    Article  Google Scholar 

  15. P. J. Dillon and F. H. Rigler, “A test of a simple nutrient budget model predicting the phosphorus concentration in lake water,” J. Fish Res. Board Can. 31, 1771–1778 (1974).

    Article  Google Scholar 

  16. V. G. Drabkova and A. V. Izmailova, “Assessment of change of water state of the largest lakes and water reservoirs of the Russian Federation,” Geograf. Prir. Resurs. 4, 22–29 (2014).

    Google Scholar 

  17. C. T Driscoll, K. M. Driscoll, H. Fakhraei, and K. Civerolo, “Long-term temporal trends and spatial patterns in the acid–base chemistry of lakes in the Adirondack region of N.Y. in response to decreases in acidic deposition, Atmos. Environ. 146, 5–14 (2016).

    Article  Google Scholar 

  18. A. Eaton, E. Arnold, A. E. Archie, E. W. Rice, and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 17th Ed. (American Public Health Association (APHA), Washington, 1992).

  19. N. A. Gashkina and T. I. Moiseenko, “Trophicity limitation in small lakes by main nutrients,” Dokl. Earth Sci. 435 (1), 1539–1543 (2010).

    Article  Google Scholar 

  20. M. S. Golubkov, S. M. Golubkov, and L. P. Umnova, “Primary production and problems of eutrophication of the Neva estuary,” Ecosystems of the Neva Estuary (Nauchn. tsentr. RAN, St. Petersburg, 2008), pp. 313–338 [in Russian].

  21. L. Hakanson and V. V. Boulion, “A practical approach to predict the duration of the growing season for European lakes,” Ecol. Model. 140, 235–245 (2001).

    Article  Google Scholar 

  22. L. Hakanson and V. V. Boulion, “The Lake Foodweb— modelling predation and abiotic/biotic interactions,” (Backhuys Publishers, Leiden, 2002).

    Google Scholar 

  23. A. Henriksen, I. Kämäri, M. Posh, and A. Wilander, “Critical loads of acidity: Nordic surface waters,” Ambio 21, 356–363 (1992).

    Google Scholar 

  24. C. Huang, X. Wang, H. Yang, Y. Li, Y. Wang, X. Chen, and L. Xu, “Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009,” Sci. Total Environ. 485–486, 1–11 (2014).

    Article  Google Scholar 

  25. J. Huang, C.-C. Xu, B. G. Ridoutt, X.-C. Wang, and P.‑A. Ren, “Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China,” J. Cleaner Prod. 159, 171–179 (2017).

    Article  Google Scholar 

  26. ICP–Water Report: Acidification of Surface Water in Europe and North America: Trends, Biological Recovery, and Heavy Metals (2007).

  27. N. M. Kalinkina, E. V. Tekanova, and M. T. Syarki, “Ecosystem of Lake Onega: reaction of aquatic communities on anthropogenic factors and climatic changes,” Vodn. Khoz. Rossii: Probl., Tekhnol., Upravl., No. 1, 4–18 (2017).

  28. D. D. Kane, J. D. Conroy, R. P. Richards, D. B. Baker, and D. A. Culver, “Re-eutrophication of Lake Erie: Correlations between tributary nutrient loads and phytoplankton biomass,” J. Great Lakes Res. 40 (3), 496–501 (2014).

    Article  Google Scholar 

  29. M. Karydis, “Eutrophication, assessment of coastal waters based on indicators: a literature review,” Global Nest J. 10 (10), 20–21 (2009).

    Google Scholar 

  30. B. Khenderson-Sellers and Kh. B. Marklend, “Dying Lakes: Causes and Control of Anthropogenic Eutrophication (Gidrometeozdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  31. Ladoga, Ed. by V. A. Rumyantsev and S. A. Kondrat’ev (Nestor, St. Petersburg, 2013).

    Google Scholar 

  32. F. Lepori and J. J. Roberts., “Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication,” J. Great Lakes Res. 43 (2), 255–264 (2017).

    Article  Google Scholar 

  33. A. Lerman, F. T. Mackenzie, and Ver L. May, “Coupling of the perturbed C-N–P cycles in industrial time,” Aquat. Geochem. 10, 3–32 (2004).

    Article  Google Scholar 

  34. Y. Liu, W. Chen, D. Li, Z. Huang, Y. Shen, and Y. Liu, “Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu,” China. J. Environ. Sci. 23 (4), 575–581 (2011).

    Article  Google Scholar 

  35. M. M. Mekonnen and A. Y. Hoekstra, “Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: A high resolution global study,” Water Resour. Res. 54, 345–358 (2018).

    Article  Google Scholar 

  36. T. Moiseenko and A. Sharov, “Large Russian lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review,” Geosciences 9 (12), 492 (2019).

    Article  Google Scholar 

  37. T. I. Moiseenko, “Anthropogenic Processes in Continental Waters of Arctic Regions and Criteria for Their Assessment,” Water Resour. 45 (4), 578–588 (2018).

    Article  Google Scholar 

  38. T. I. Moiseenko, M. M. Bazova, M. I. Dinu, N. A. Gashkina, and L. P. Kudryavtseva, “Changes in the geochemistry of land waters at climate warming and a decrease in acid deposition recovery of the lakes or their evolution?,” Geochem. Int. 60 (7), 685–701 (2022).

    Article  Google Scholar 

  39. T. I. Moiseenko, M. I. Dinu, M. M. Bazova, and Heleen A. de Wit., “Long-term changes in the water chemistry of subarctic lakes as a response to reduction of air pollution: case study in the Kola North, Russia,” Water, Air, Soil Pollut. 226 (98), 1–12 (2015).

    Article  Google Scholar 

  40. D. T. Monteith, J. L. Stoddard, C. D. Evans, Wit H. A. de, M. Forsius, T. Hogasen, A. Wilander, B. L. Skjelkvale, D. S. Jeffries, J. Vuorenmaa, B. Keller, and J. Vesely, and J. Kopacek, “Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry,” Nature 450, 537–539 (2007).

    Article  Google Scholar 

  41. R. Mosello and M. Bianchi, (1994–1997) Geiss HAQUACON–MedBas “Acid Rain Analysis,” (Ispra, 1996).

  42. E. Neverova-Dziopak, Podstawy Zarzadzania Procesem Eutrofizacji Antropogenicznej (AGH, Krakow, 2010).

    Google Scholar 

  43. E. Neverova-Dziopak, Assessment of Trophical Stage of Surface Waters (SPbGASU, St. Petersburg, 2020) [in Russian].

  44. Yu. Odum, Basic Ecology (Saunders College, 1983).

    Google Scholar 

  45. N. P. Pershina and A. I. Polishchuk, “Assessment of chemical composition of atmospheric precipitates at the territory of the Northwestern Federal Okrug of Russia and Finland based on results of International Russian—Finnish—Norvegian project "Ecogeochemistry of the Barents Sea Region,” Tr. Glavnoi Geofiz. Observ. im. A.I. Voeikova 558, 233–251 (2008).

    Google Scholar 

  46. L. L. Rossolimo, A Change of Limnic Systems under the Influence of Anthropogenic Factor (Nauka, Moscow, 1977) [in Russian].

  47. V. A. Rumyantsev, V. G. Drabkova, and A. V. Izmailova, “World’s largest lakes and prospects of their practical use,” Vestn. Ross. Akad. Nauk 84 (1), 41–51 (2014).

    Google Scholar 

  48. V. A. Rumyantsev, V. G. Drabkova, and A. V. Izmailova, Lakes of European Russia (LEMA, St. Petersburg, 2015) [in Russian].

    Google Scholar 

  49. A. V. Ryzhakov and A. V. Sabylina, “Phosphatase activity and rate of phosphorus circulation in water of the Ladoga and Onega lakes,” Ekol. Khim. 24 (2), 111–115 (2015).

    Google Scholar 

  50. Clements M. D. San, I. J. Fernandez, R. H. Lee, J. A. Roberti, M. B. Adams, G. A. Rue, and D. M. McKnight, “Long-term experimental acidification drives watershed scale shift in dissolved organic matter composition and flux,” Environ. Sci. Technol. 52, 2649–2657 (2018).

    Article  Google Scholar 

  51. D. W. Schindler, “Carbon, nitrogen, phosphorus and the eutrophication of freshwater lakes,” J. Phycol. 7, 321–329 (1971).

    Article  Google Scholar 

  52. A. N. Sharov, Extended Abstract of Doctoral Dissertation in Biology. https://www.sciencemag.org/content/286/ 5442/1129 (2020).long

  53. Standard Methods for the Examination of Water and Wastewater (Amer, Publ, Health Assoc., Wash, 1992).

  54. R. W. Sterner, T. Andersen, J. J. Elser, D. O. Hessen, J. M. Hood, E. McCauley, and J. Urabe, “Scale-dependent carbon: nitrogen: phosphorus seston stoichiometry in marine and fresh waters, “Limnol. Oceanogr. 53 (3), 1169–1180 (2008).

    Article  Google Scholar 

  55. J. L. Stoddard, Sickle J. Van, A. T. Herlihy, J. Brahney, S. Paulsen, D. V. Peck, R. Mitchell, and A. I. Pollard, “Continental-scale increase in lake and stream phosphorus: are oligotrophic systems disappearing in the United States?,” Environ. Sci. Technol. 50, 3409–3415 (2016).

    Article  Google Scholar 

  56. K. E Strock, S. J. Nelson, J. S. Kahl, J. E. Saros, and W. H. McDowell, “Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern U.S,” Environ. Sci. Technol. 48, 4681–4689 (2014).

    Article  Google Scholar 

  57. K. E. Strock, N. Theodore, W. G. Gawley, A. C. Ellsworth, and J. E. Saros, “Increasing dissolved organic carbon concentrations in northern boreal lakes: implications for lake water transparency and thermal structure,” J. Geophys. Res. Biogeosci. 122, 1022–35 (2017).

    Article  Google Scholar 

  58. P. Jr. Toledo, M. Talartico, S. J. Chinez, and E. G. Agudo, “A aplicacao de modelos simplificados para a avaliacao do processo de eutrofizacao em Lagos e reservatórios tropicais,” In: Congresso Brasileiro de Engenharia Sanitária e Ambiental, 12, 34 (1983).

  59. I. S. Trifonova, A. L. Afanaseva, E. S. Makartseva, and D. S. Bardinskii, “Relations of phyto- and zooplankton in lakes of different types of the Karelian Isthmus,” Izv. Samarsk. Nauchn. Ts. Ross. Akad. Nauk 18 (2-2), 515–519 (2016).

  60. L. I. Tsvetkova, Doctoral Dissertation in Biology (LISI, Leningrad, 1980) [in Russian].

  61. V. I. Vernadskii, History of Natural Waters, Ed. by S. L. Shvartsev and F. T. Yanshina (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  62. G. G. Vinberg, Primary Basin Production (AN BSSR, Minsk, 1960) [in Russian].

    Google Scholar 

  63. G. G. Vinberg, “Eutrophication and protection of waters,” Gidrobiol. Zh. 10 (2), 129–135 (1974).

    Google Scholar 

  64. G. V. Voitkevich, A. V. Kokin, A. E. Miroshnikov, and V. G. Prokhorov, Reference Book on Geochemistry (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  65. T. V. Zhukova, “Long-term dynamics of phosphorus in the Narochanskie Lakes and factors determining it,” Water Res. 40 (5), 468–468 (2013).

    Google Scholar 

Download references

Funding

This study was financially supported by Russian Science Foundation, Grant 22-17-00061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Moiseenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, T.I., Bazova, M.M. & Lummens, E.O. Biogeochemical Changes in Arctic Lakes at Climate Warming: Regional Features. Geochem. Int. 61, 387–400 (2023). https://doi.org/10.1134/S0016702923040109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923040109

Keywords:

Navigation