Skip to main content

Advertisement

Log in

Profundal benthic invertebrate communities in boreal lakes vary with climate fluctuation

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Despite increasing evidence that climate change affects aquatic ecosystems, influences on lake benthic communities are still poorly known. We studied the effects of short-term climatic fluctuation on profundal benthic invertebrates using at least six annual samples (over 6–17 years) from 38 Finnish lake basins. Faunal abundance, species diversity and species composition were related to annual winter and summer North Atlantic Oscillation (NAO) indices as measures of climatic fluctuation. Algal productivity, hypolimnetic oxygen concentration and water temperature weakly increased during the positive NAO periods. Profundal macroinvertebrate abundance and species diversity declined with increasing NAO in summer, but not winter. The main gradient of species compositional overturn (DCA axis 1) was negatively associated with lake productivity and varied independent of NAO, whereas the secondary gradient (DCA axis 2) correlated positively with hypolimnetic temperature and winter NAO. The responses of species diversity and abundance to climatic fluctuation were not related to any measured lake-specific environmental characteristics, but the response of species composition (DCA axis 1) to NAO showed a consistent negative association with lake depth and trophic status, so that size and even direction of compositional response to NAO was related to these two lake characteristics. Our study suggests that local profundal benthic macroinvertebrate communities can respond rapidly to short-term, large-scale climate fluctuation and hence that future global warming can be expected to modify these sensitive communities considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anneville O, Souissi S, Gammeter S, Straile D (2004) Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshw Biol 49:98–115

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.6. http://CRAN.R-project.org/package=lme4

  • Blenckner T, Hillebrand H (2002) North Atlantic Oscillation signatures in aquatic and terrestrial ecosystems: a meta-analysis. Glob Change Biol 8:203–212

    Article  Google Scholar 

  • Blenckner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George GD, Jankowski T, Järvinen M, Aonghusa CN, Noges T, Straile D, Teubner K (2007) Large-scale climatic signatures in lakes across Europe: a meta-analysis. Glob Change Biol 13:1314–1326

    Article  Google Scholar 

  • Bradley DC, Ormerod SJ (2001) Community persistence among stream invertebrates tracks the North Atlantic Oscillation. J Anim Ecol 70:987–996

    Article  Google Scholar 

  • Brodersen KP, Quinlan R (2006) Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat Sci Rev 25:1995–2012

    Article  Google Scholar 

  • Catalan J, Pla-Rabés S, Wolfe AP, Smol JP, Rühland KM, Anderson NJ, Kopácek J, Stuchlík E, Schmidt R, Koinig KA, Camarero L, Flower RJ, Heiri O, Kamenik C, Korhola A, Leavitt PR, Psenner R, Renberg I (2013) Global change revealed by palaeolimnological records from remote lakes: a review. J Paleolimnol 49:513–535

    Article  Google Scholar 

  • Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. Bioscience 49:119–127

    Article  Google Scholar 

  • Dokulil MT, Jagsch A, Glen George D, Anneville O, Jankowski T, Wahl B, Lenhart B, Blenckner T, Teubner K (2006) Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol Oceanogr 51:2787–2793

    Article  Google Scholar 

  • Dukes JS, Moone HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25 year period. Glob Change Biol 13:942–957

    Article  Google Scholar 

  • Edwards WJ, Conroy JD, Culver DA (2005) Hypolimnetic oxygen depletion dynamics in the central basin of Lake Erie. J Great Lakes Res 31:262–271

    Article  CAS  Google Scholar 

  • Eggermont H, Heiri O (2012) The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456

    Article  PubMed  Google Scholar 

  • Fang X, Stefan HG (1997) Simulated climate change effects on dissolved oxygen characteristics in ice-covered lakes. Ecol Model 103:209–229

    Article  CAS  Google Scholar 

  • Fields PA, Graham JB, Rosenblatt RH, Somero GN (1993) Effects of expected global climate change on marine faunas. Trends Ecol Evol 8:361–367

    Article  CAS  PubMed  Google Scholar 

  • Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic Oscillation: past, present, and future. J Clim 22:1082–1103

    Article  Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation index. Limnol Oceanogr 45:1058–1066

    Article  Google Scholar 

  • Gillet NP, Graf HF, Osborn TJ (2003) Climate change and the North Atlantic Oscillation. Geophys Monogr Ser 134:193–209

    Google Scholar 

  • Goedkoop W, Johnson RK (2001) Factors affecting population fluctuations of the glacial relict amphipod Monoporeia affinis (Lindström) in Sweden’s largest lakes. Ambio 30:552–558

    CAS  PubMed  Google Scholar 

  • Hallstan S, Johnson RK, Willén E, Grandin U (2012) Comparison of classification-then-modelling and species-by-species modelling for predicting lake phytoplankton assemblages. Ecol Model 231:11–19

    Article  Google Scholar 

  • Hämäläinen H, Luotonen H, Koskenniemi E, Liljaniemi P (2003) Inter-annual variation in macroinvertebrate communities in a shallow forest lake in eastern Finland during 1990–2001. Hydrobiologia 506(509):389–397

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54

    Article  PubMed  Google Scholar 

  • Heiri O, Lotter AF, Hausmann S, Kienast F (2003) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–484

    Article  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic Oscillation. Science 291:603–605

    Article  CAS  PubMed  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph Series, 134, pp 279

  • IPCC (2002) IPCC Technical paper V: climate change and biodiversity. In: Gitay H, Suárez A, Watson RT, Dokken DJ (eds) IPCC, Geneva, Switzerland. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations

  • Jackson JK, Füreder L (2006) Long-term studies of freshwater macroinvertebrates: a review of frequency, duration and ecological significance. Freshw Biol 51:591–603

    Article  Google Scholar 

  • Jankowski X, Livingstone DM, Buhrer H, Forster R, Niederhauser P (2006) Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51:815–819

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Özen A, Olesen JE (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Johnson RK, Angeler DG (2010) Tracing recovery under changing climate: response of phytoplankton and invertebrate assemblages to decreased acidification. J N Am Benthol Soc 29:1472–1490

    Article  Google Scholar 

  • Johnson RK, Wiederholm T (1992) Pelagic-benthic coupling: the importance of diatom interannual variability for population oscillations of Monoporeia affinis. Limnol Oceanogr 37:1596–1607

    Article  Google Scholar 

  • Jyväsjärvi J, Tolonen KT, Hämäläinen H (2009) Natural variation of profundal macroinvertebrate communities in boreal lakes is related to lake morphometry: implications for bioassessment. Can J Fish Aquat Sci 66:589–601

    Article  Google Scholar 

  • Jyväsjärvi J, Boros G, Jones RI, Hämäläinen H (2013a) The importance of food relative to oxygen and temperature in structuring lake profundal macroinvertebrate assemblages. Hydrobiologia 709:55–72

    Article  Google Scholar 

  • Jyväsjärvi J, Immonen H, Högmander P, Högmander H, Hämäläinen H, Karjalainen J (2013b) Can lake restoration by fish removal improve the status of profundal macroinvertebrate assemblages? Freshw Biol 58:1149–1161

    Article  Google Scholar 

  • Jyväsjärvi J, Järvinen M, Hämäläinen H (2014) Spatial community concordance of summer phytoplankton and profundal macroinvertebrates in boreal lakes. Can J Fish Aquat Sci 71:1776–1783

    Article  Google Scholar 

  • Kernan M, Battarbee RW, Moss B (2010) Climate change impacts of freshwater ecosystems. Blackwell Publishing Ltd, Oxford

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2014) lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0–6. http://CRAN.R-project.org/package=lmerTest

  • Livingstone DM (1993) Temporal structure in the deep-water temperature of four Swiss lakes: a short-term climate change indicator? Verh Int Verein Limnol 25:75–81

    Google Scholar 

  • Livingstone DM (1999) Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and to the North Atlantic Oscillation. Limnol Oceanogr 44:1486–1497

    Article  Google Scholar 

  • Markensten H (2006) Climate effects on early phytoplankton biomass over three decades modified by the morphometry in connected lake basins. Hydrobiologia 559:319–329

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2008) Vegan: community ecology package. R package version 1.15-1. http://vegan.r-forge.r-project.org/

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Article  PubMed  Google Scholar 

  • Schindler DW, Beaty KG, Fee EJ, Cruikshank DR, DeBruyn ER, Findlay DL, Linsey GA, Shearer JA, Stainton MP, Turner MA (1990) Effects of climatic warming on lakes of the central boreal forest. Science 250:967–970

    Article  CAS  PubMed  Google Scholar 

  • Specziár A, Vörös L (2001) Long-term dynamics of Lake Balaton’s chironomid fauna and its dependence on the phytoplankton production. Arch Hydrobiol 152:119–142

    Google Scholar 

  • Straile S, Jöhnk K, Rossknecht H (2003) Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol Oceanogr 48:1432–1438

    Article  CAS  Google Scholar 

  • Straile D, Livingstone DM, Weyhenmeyer GA, Glen George D (2004) The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In: Hurrel JW, Kushnir Y, Ottersen G, Visbeck V (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington, DC, pp 263–279

    Google Scholar 

  • Walker IR, Smol JP, Engstrom DR, Birks HJB (1991) An assessment of chironomidae as quantitative indicators of past climate change. Can J Fish Aquat Sci 48:975–987

    Article  Google Scholar 

  • Wang C, Fiedler PC (2006) ENSO variability and the eastern tropical Pacific: a review. Prog Oceanogr 69:239–266

    Article  Google Scholar 

  • Weyhenmeyer GA, Blenckner T, Petterson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44:1788–1792

Download references

Acknowledgments

We gratefully acknowledge all those who contributed to the profundal macroinvertebrate dataset derived from various research projects, lake biomonitoring programs and limnological studies. Professor Steve Ormerod and an anonymous referee provided insightful comments which improved the quality of the paper. Roger Jones kindly provided linguistic assistance for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Jyväsjärvi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Supplementary material 2 (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyväsjärvi, J., Hämäläinen, H. Profundal benthic invertebrate communities in boreal lakes vary with climate fluctuation. Aquat Sci 77, 261–269 (2015). https://doi.org/10.1007/s00027-014-0384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0384-1

Keywords

Navigation