Skip to main content
Log in

Predation and competition effects on the size diversity of aquatic communities

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Body size has been widely recognised as a key factor determining community structure in ecosystems. We analysed size diversity patterns of phytoplankton, zooplankton and fish assemblages in 13 data sets from freshwater and marine sites with the aim to assess whether there is a general trend in the effect of predation and resource competition on body size distribution across a wide range of aquatic ecosystems. We used size diversity as a measure of the shape of size distribution. Size diversity was computed based on the Shannon-Wiener diversity expression, adapted to a continuous variable, i.e. as body size. Our results show that greater predation pressure was associated with reduced size diversity of prey at all trophic levels. In contrast, competition effects depended on the trophic level considered. At upper trophic levels (zooplankton and fish), size distributions were more diverse when potential resource availability was low, suggesting that competitive interactions for resources promote diversification of aquatic communities by size. This pattern was not found for phytoplankton size distributions where size diversity mostly increased with low zooplankton grazing and increasing nutrient availability. Relationships we found were weak, indicating that predation and competition are not the only determinants of size distribution. Our results suggest that predation pressure leads to accumulation of organisms in the less predated sizes, while resource competition tends to favour a wider size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, London

    Book  Google Scholar 

  • Arim M, Abades SR, Laufer G, Loureiro M, Marquet PA (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119(1):147–153

    Article  Google Scholar 

  • Armstrong RA (1994) Grazing limitation and nutrient limitation in marine ecosystems—steady state solutions of an ecosystem model with multiple food-chains. Limnol Oceanogr 39(3):597–608

    Article  CAS  Google Scholar 

  • Badosa A, Boix D, Brucet S, López-Flores R, Quintana XD (2006) Nutrients and zooplankton composition and dynamics in relation to the hydrological pattern in a confined Mediterranean salt marsh (NE Iberian Peninsula). Estuar Coast Shelf S 66(3–4):513–522

    Article  Google Scholar 

  • Badosa A, Boix D, Brucet S, López-Flores R, Gascón S, Quintana XD (2007a) Zooplankton taxonomic and size diversity in Mediterranean coastal lagoons (NE Iberian Peninsula): Influence of hydrology, nutrient composition, food resource availability and predation. Estuar Coast Shelf S 71(1–2):335–346

    Article  Google Scholar 

  • Badosa A, Boix D, Brucet S, López-Flores R, Quintana XD (2007b) Short-term effects of changes in water management on the limnological characteristics and zooplankton of a eutrophic Mediterranean coastal lagoon (NE Iberian Peninsula). Mar Pollut Bull 54(8):1273–1284

    Article  CAS  PubMed  Google Scholar 

  • Basset A, DeAngelis DL (2007) Body size mediated coexistence of consumers competing for resources in space. Oikos 116(8):1363–1377

    Article  Google Scholar 

  • Bertrand JA, De Sola LG, Papaconstantinou C, Relini G, Souplet A (2002) The general specifications of the MEDITS surveys. Sci Mar 66:9–17

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation body size and composition of plankton. Science 150(3692):28–35

    Article  CAS  PubMed  Google Scholar 

  • Brucet S, Boix D, López-Flores R, Badosa A, Moreno-Amich R, Quintana XD (2005) Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes: taxon-based and size-based approaches. Arch Hydrobiol 162(4):535–555

    Article  Google Scholar 

  • Brucet S, Boix D, López-Flores R, Badosa A, Quintana XD (2006) Size and species diversity of zooplankton communities in fluctuating Mediterranean salt marshes. Estuar Coast Shelf S 67(3):424–432

    Article  Google Scholar 

  • Brucet S, Boix D, Quintana XD, Jensen E, Nathansen LW, Trochine C, Meerhoff M, Gascón S, Jeppesen E (2010) Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: Implications for effects of climate change. Limnol Oceanogr 55(4):1697–1711

    Article  Google Scholar 

  • Capblancq J (1990) Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments—an overview. Hydrobiologia 207:1–14

    Article  CAS  Google Scholar 

  • Compte J, Gascón S, Quintana XD, Boix D (2010) Top-predator effects of jellyfish Odessia maeotica in Mediterranean salt marshes. Mar Ecol- Prog Ser 402:147–159

    Article  Google Scholar 

  • Compte J, Gascón S, Quintana XD, Boix D (2011) Fish effects on benthos and plankton in a Mediterranean salt marsh. J Exp Mar Biol Ecol 409:259–266

    Article  Google Scholar 

  • Compte J, Gascón S, Quintana XD, Boix D (2012) The effects of small fish presence on a species-poor community dominated by omnivores: example of a size-based trophic cascade. J Exp Mar Biol Ecol 418–419:1–11

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Cumming GS, Havlicek TD (2002) Evolution, ecology, and multimodal distributions of body size. Ecosystems 5(7):705–711

    Article  Google Scholar 

  • de Eyto E, Irvine K (2005) Variation in the biomass of functional groups comprising the open-water plankton of shallow lakes in Ireland. P Roy Irish Acad 105B(1):53–58

    Article  Google Scholar 

  • de Eyto E, Irvine K (2007) Assessing the status of shallow lakes using an additive model of biomass size spectra. Aquat Conserv 17(7):724–736

    Article  Google Scholar 

  • Duarte CM, Agusti S, Canfield DE (1990) Size plasticity of fresh-water phytoplankton—implications for community structure. Limnol Oceanogr 35(8):1846–1851

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V (2011) Basic concepts and procedures. In: Pawlowsky-Glahn V, Buccianti A (eds) Compositional data analysis: theory and applications. Wiley, Chichester

    Google Scholar 

  • Emmrich M, Brucet S, Ritterbusch D, Mehner T (2011) Size spectra of lake fish assemblages: responses along gradients of general environmental factors and intensity of lake-use. Freshw Biol 56(11):2316–2333

    Article  CAS  Google Scholar 

  • Evans DO, Loftus DH (1987) Colonization of inland lakes in the Great Lakes Region by rainbow smelt, Osmerus mordax: their freshwater niche and effects on indigenous fishes. Can J Fish Aquat Sci 44(S2):249–266

    Article  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2009) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32(1):119–137

    Article  Google Scholar 

  • Gaedke U (1992) The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol Oceanogr 37(6):1202–1220

    Article  Google Scholar 

  • Gascón S, Boix D, Sala J, Quintana XD (2009) Patterns in size and species diversity of benthic macroinvertebrates in Mediterranean salt marshes. Mar Ecol Prog Ser 391:21–32

    Article  Google Scholar 

  • Guidi L, Stemmann L, Jackson GA, Ibanez F, Claustre H, Legendre L, Picheral M, Gorsky G (2009) Effects of phytoplankton community on production, size and export of large aggregates: a world-ocean analysis. Limnol Oceanogr 54(6):1951–1963

    Article  Google Scholar 

  • Hall DJ, Threlkeld ST, Burns CW, Crowley PH (1976) Size-efficiency hypothesis and size structure of zooplankton communities. Annu Rev Ecol S 7:177–208

    Article  Google Scholar 

  • Hambright KD, Drenner RW, McComas SR, Hairston NG (1991) Gape-limited piscivores, planktivore size refuges, and the trophic cascade hypothesis. Arch Hydrobiol 121(4):389–404

    Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448(7150):188–190

    Article  CAS  PubMed  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  • Hu SXS, Tessier AJ (1995) Seasonal succession and the strength of intraspecific and interspecific competition in a Daphnia assemblage. Ecology 76(7):2278–2294

    Article  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4):577–586

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45(2):201–218

    Article  CAS  Google Scholar 

  • Jeppesen E, Jensen JP, Jensen C, Faafeng B, Hessen DO, Søndergaard M, Lauridsen T, Brettum P, Christoffersen K (2003) The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6(4):313–325

    Article  CAS  Google Scholar 

  • Kerr SR, Dickie LM (2001) The biomass spectrum. A predator-prey theory of aquatic production. Columbia University Press, New York

    Google Scholar 

  • Lawlor LR (1980) Structure and stability in natural and randomly constructed competitive communities. Am Nat 116(3):394–408

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam

    Google Scholar 

  • Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol S 39:615–639

    Article  Google Scholar 

  • López-Flores R, Boix D, Badosa A, Brucet S, Quintana XD (2006) Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem. Mar Biol 149(6):1313–1324

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Ecology, Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  CAS  PubMed  Google Scholar 

  • Makarewicz JC, Bertram P, Lewis TW (1998) Changes in phytoplankton size-class abundance and species composition coinciding with changes in water chemistry and zooplankton community structure of Lake Michigan, 1983–1992. J Great Lakes Res 24(3):637–657

    Article  CAS  Google Scholar 

  • Margalef R (1957) La teoría de la información en ecología. Memorias de la Real Academia de Ciencias y Artes. Barcelona 32:373–449

    Google Scholar 

  • Marquet PA, Quinones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M (2005) Scaling and power-laws in ecological systems. J Exp Biol 208(9):1749–1769

    Article  PubMed  Google Scholar 

  • Mehner T, Diekmann M, Bramick U, Lemcke R (2005) Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw Biol 50(1):70–85

    Article  CAS  Google Scholar 

  • Mittelbach GG, Persson L (1998) The ontogeny of piscivory and its ecological consequences. Can J Fish Aquat Sci 55(6):1454–1465

    Article  Google Scholar 

  • Mosimann JE (1962) On the compound multinomial distribution, the multivariate beta-distribution and correlations among proportions. Biometrika 49(1–2):65–82

    Google Scholar 

  • Moya-Laraño J, Corcobado G (2008) Plotting partial correlation and regression in ecological studies. Web Ecol 8:35–46

    Article  Google Scholar 

  • Muñoz AA, Ojeda FP (1998) Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114(4):563–573

    Article  Google Scholar 

  • Odum HT, Cantlon JE, Kornicker LS (1960) An organizational hierarchy postulate for the interpretation of species-individual distributions, species entropy, ecosystem evolution, and the meaning of a species-variety index. Ecology 41(2):395–399

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Vegan: community ecology package. r foundation for statistical computing. R Package Version 1.15–3

  • Paredes MA, Montecino V (2011) Size diversity as an expression of phytoplankton community structure and the identification of its patterns on the scale of fjords and channels. Cont Shelf Res 31(3–4):272–281

    Article  Google Scholar 

  • Pearson K (1897) Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London LX: pp 489–502

  • Peters RH, Downing JA (1984) Empirical analysis of zooplankton filtering and feeding rates. Limnol Oceanogr 29(4):763–784

    Article  Google Scholar 

  • Pianka ER (1974) Niche overlap and diffuse competition. P Natl Acad Sci 71:2141–2145

    Article  CAS  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New York

    Google Scholar 

  • Post DM, Takimoto G (2007) Proximate structural mechanisms for variation in food-chain length. Oikos 116(5):775–782

    Article  Google Scholar 

  • Quintana XD, Brucet S, Boix D, López-Flores R, Gascón S, Badosa A, Sala J, Moreno-Amich R, Egozcue JJ (2008) A nonparametric method for the measurement of size diversity with emphasis on data standardization. Limnol Oceanogr- Meth 6:75–86

    Article  Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rodríguez J, Li WKW (1994) The size structure and metabolism of the pelagic ecosystem. Scientia Marina, Barcelona

    Google Scholar 

  • Romo S, Miracle MR, Villena MJ, Rueda J, Ferriol C, Vicente E (2004) Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshw Biol 49(12):1593–1607

    Article  CAS  Google Scholar 

  • Romo S, Villena MJ, Sahuquillo M, Soria J, Giménez M, Alfonso T, Vicente E, Miracle R (2005) Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as northern shallow lakes? Freshw Biol 50:1706–1717

    Article  CAS  Google Scholar 

  • Romo S, García-Murcia A, Villena MJ, Sánchez V, Ballester A (2008) Tendencias del fitoplancton en el lago de la Albufera de Valencia e implicaciones para su ecología, gestión y recuperación. Limnetica 27:11–28

    Google Scholar 

  • Rudolf VHW (2012) Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems. J Anim Ecol 81(3):524–532

    Article  PubMed  Google Scholar 

  • Rudolf VHW, Rasmussen NL (2013) Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94(5):1046–1056

    Article  PubMed  Google Scholar 

  • Ruiz J (1994) The measurement of size diversity in the pelagic ecosystem. Sci Mar 58(1–2):103–107

    Google Scholar 

  • Sanchez F, Olaso I (2004) Effects of fisheries on the Cantabrian Sea shelf ecosystem. Ecol Model 172(2–4):151–174

    Article  Google Scholar 

  • Schartau M, Landry MR, Armstrong RA (2010) Density estimation of plankton size spectra: a reanalysis of IronEx II data. J Plankton Res 32(8):1167–1184

    Article  Google Scholar 

  • Schoener TW (1974) Resource Partitioning in Ecological Communities. Science 185(4145):27–39

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing

  • Thingstad TF, Havskum H, Garde K, Riemann B (1996) On the strategy of ‘‘eating your competitor’’: a mathematical analysis of algal mixotrophy. Ecology 77(7):2108–2118

    Article  Google Scholar 

  • Turner AM, Mittelbach GG (1990) Predator avoidance and community structure—interactions among piscivores, planktivores, and plankton. Ecology 71(6):2241–2254

    Article  Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol S 27:337–363

    Article  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size structured populations. Annu Rev Ecol S 15:393–425

    Article  Google Scholar 

  • Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71(6):1063–1074

    Article  Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20(7):402–409

    Article  PubMed  Google Scholar 

  • Wootton RJ (1990) Ecology of teleost fishes. Fish and fisheries Series 1. Chapman & Hall

  • Ye L, Chang CY, Garcia-Comas C, Gong GC, Hsieh CH (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82(5):1052–1061

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Comisión de Investigación Científica y Técnica (CICYT), Programa de Investigación Fundamental (CGL2008–05778/BOS and CGL2011-23907). We thank Dr. Dietmar Straile, who provided zooplankton data on Lake Constance. S. Brucet’s contribution was supported by the Marie Curie Intra European Fellowship No. 330249 (CLIMBING).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier D. Quintana.

Appendix

Appendix

See Table 6.

Table 6 Complete list of predation-related and competition-related balances used as explanatory variables in the stepwise multiple regression, where the response variable is the size diversity of each data set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintana, X.D., Arim, M., Badosa, A. et al. Predation and competition effects on the size diversity of aquatic communities. Aquat Sci 77, 45–57 (2015). https://doi.org/10.1007/s00027-014-0368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0368-1

Keywords

Navigation