Skip to main content

Advertisement

Log in

A cross-continental comparison of stream invertebrate community assembly to assess convergence in forested headwater streams

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We studied two forested, headwater streams to compare patterns of invertebrate community structure and consequences for ecosystem functioning in two temperate locations, Galicia (NW Spain) and Vancouver (SW Canada). The two sites were selected due to the similar dominance of congeneric invertebrate species, as well as similarity in their hydromorphological and physico-chemical characteristics. Field experiments tested for similarities and dissimilarities in the invertebrate community assembly in leaf packs in streams. Our results indicated that alder leaves always decomposed faster than eucalyptus leaves, from threefold higher in Galicia to tenfold in Vancouver. At the species level, the biogeographic factor was the main source of variation on invertebrate assemblages (84.9 %), but this percentage quickly decreased at higher levels of taxonomic resolution, i.e. family. Moreover, there was a strong leaf species influence in both sites. There were more invertebrates colonizing leaves (per unit mass) in Vancouver than in Galicia (fourfold on average), though alder leaves seemed to be always the preferred resource (5.5-fold higher density on average). Regardless, a similar trophic structure was found between sites and leaf species. Brillia spp. and Corynoneura spp., a shredder and a collector-gatherer, respectively, seemed to be the most important species and showed similar colonization patterns in both sites with potential to strongly influence the leaf processing and nutrient cycling in these ecosystems. Even though our results are limited to the similarity found between only two sites, results from other studies, where the same species have been found coexisting during leaf pack processing, reinforces our results that common rules and mechanisms determine patterns of key ecological processes on a biogeographical scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abelho M (2001) From litterfall to breakdown in streams: a review. Sci World 1:656–680. doi:10.1100/tsw.2001.103

    CAS  Google Scholar 

  • Bärlocher F (1992) Community organization. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer-Verlag, Berlin, pp 38–76

    Chapter  Google Scholar 

  • Basaguren A, Pozo J (1994) Leaf litter processing of alder and eucalyptus in the Agüera stream system (northern Spain). II Macroinvertebrates associated. Archiv für Hydrobiologie 132:57–68

    Google Scholar 

  • Boulton AJ, Boon PI (1991) A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Aust J Mar Freshw Res 42:1–43

    Article  CAS  Google Scholar 

  • Boyero L, Pearson RG, Dudgeon D, Graça MA, Gessner MO, Albariño RJ, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramírez A, Chará J, Moretti MS, Gonçalves JF Jr, Helson JE, Chará-Serna AM, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AO, Buria LM, Villanueva VD, Zúñiga MC, Pringle CM (2011) Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92:1839–1848. doi:10.1890/10-2244.1

    Article  PubMed  Google Scholar 

  • Campbell IC, Fuchshuber L (1995) Polyphenols, condensed tannins, and processing rates of tropical and temperate leaves in an Australian stream. J N Am Benthol Soc 14:174–182

    Article  Google Scholar 

  • Canhoto C, Graça MAS (1995) Food value of introduced eucalypt leaves for a Mediterranean stream detritivore Tipula lateralis. Freshw Biol 34:209–214. doi:10.1111/j.1365-2427.1995.tb00881.x

    Article  Google Scholar 

  • Canhoto C, Graça MAS (1996) Decomposition of Eucalyptus globulus leaves and tree native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiol 333:79–85. doi:10.1007/BF00017570

    Article  CAS  Google Scholar 

  • Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498. doi:10.1007/s00442-003-1311-7

    Article  PubMed  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches, 2nd edn. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Trends Ecol Evol 366:2351–2363

    Google Scholar 

  • Cillero C, Pardo I, López E (1999) Comparisons of riparian vs. over stream trap location in the estimation of vertical litterfall inputs. Hydrobiol 416:171–179. doi:10.1023/A:1003823722568

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Clements FE (1938) Nature and structure of the climax. J Ecol 24:252–282

    Article  Google Scholar 

  • Closs GP, Lake PS (1994) Spatial and temporal variation in the structure of an intermittent-stream food web. Ecol Monogr 64:1–21. doi:10.2307/2937053

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and application. http://purl.oclc.org/estimates

  • Cortés RMV, Graça MAS, Monzón A (1994) Replacement of alder by eucalypt along two streams with different characteristics: differences on decay rates and consequences to the system functioning. Verhandlungen des Internationalen Verein Limnologie 25:1697–1702

    Google Scholar 

  • Cranston PS (1995) Chironomids: from genes to ecosystems. CSIRO, Melbourne

    Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  • Cummins KW, Wilzbach MA, Gates DM, Perry JB, Taliaferro WB (1989) Shredders and riparian vegetation. Bioscience 39:24–30

    Article  Google Scholar 

  • Dangles O, Malmqvist B (2004) Species richness decomposition relationships depend on species dominance. Ecol Lett 7:395–402. doi:10.1111/j.1461-0248.2004.00591.x

    Article  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 342–444

    Google Scholar 

  • Dobson M, Magana A, Mathooko JM, Ndegwa FK (2002) Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshw Biol 47:909–919. doi:10.1046/j.1365-2427.2002.00818.x

    Article  Google Scholar 

  • Drake JA (1991) Community-assembly mechanics and the structure of an experimental species ensemble. Am Nat 137:1–26. doi:10.1086/285143

    Article  Google Scholar 

  • Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P component. Oecologia 94:457–471. doi:10.1007/BF00566960

    Article  Google Scholar 

  • Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire—integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439

    Article  Google Scholar 

  • García L (2012) Detritivorous pathways of forested headwater streams. The role of a dominant species in the ecosystem. Dissertation, University of Vigo, Spain

  • García L, Pardo I (2012) On the way to overcome some ecological riddles of forested headwaters. Hydrobiol 696:123–136. doi:10.1007/s10750-012-1188-8

    Article  Google Scholar 

  • García L, Richardson JS, Pardo I (2012) Leaf quality influences invertebrate colonization and drift in a temperate rainforest stream. Can J Fish Aquat Sci 69:1663–1673. doi:10.1139/f2012-090

    Article  Google Scholar 

  • Gessner MO, Chauvet E (2002) A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498–510. doi:10.1890/1051-0761(2002)012[0498:ACFULB]2.0.CO;2

    Article  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Gonçalves JG, Graça MAS, Callisto M (2006) Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. J N Am Benthol Soc 25:344–355

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393. doi:10.1002/1522-2632(200107)86:4/5<383:AID-IROH383>3.0.CO;2-D

    Article  Google Scholar 

  • Graça MAS, Canhoto C (2006) Leaf litter processing in low order streams. Limnetica 25:1–10

    Google Scholar 

  • Grubbs SA, Jacobsen RE, Cummins KW (1995) Colonization by Chironomidae (Insecta, Diptera) on three distinct leaf substrates in an Appalachian mountain stream. Annls Limnol: Int J Limnol 31:105–118

    Article  Google Scholar 

  • Heard SB, Richardson JS (1995) Shredder-collector facilitation in stream detrital food webs: is there enough evidence? Oikos 72:359–366

    Article  Google Scholar 

  • Hutchinson GE (1993) A treatise on limnology, vol. 4. Wiley, The Zoobenthos

    Google Scholar 

  • Hynes HBN (1970) The ecology of stream insects. Annu Rev Entomol 15:25–42. doi:10.1146/annurev.en.15.010170.000325

    Article  Google Scholar 

  • Irons JG III, Oswood MW, Stout RJ, Pringle CM (1994) Latitudinal patterns in leaf breakdown: is temperature really important? Freshw Biol 32:401–411. doi:10.1111/j.1365-2427.1994.tb01135.x

    Article  Google Scholar 

  • Kaushik NK, Hynes HBN (1971) Fate of dead leaves that fall into streams. Archiv für Hydrobiologie 68:465–515

    Google Scholar 

  • Kiffney PM, Richardson JS, Bull JP (2003) Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. J Appl Ecol 40:1060–1076. doi:10.1111/j.1365-2664.2003.00855.x

    Article  Google Scholar 

  • Kiffney PM, Richardson JS, Bull JP (2004) Establishing light as a casual mechanism structuring stream communities in response to experimental manipulation of riparian buffer width. J N Am Benthol Soc 23:542–555. doi:10.1899/0887-3593(2004)023<0542:ELAACM>2.0.CO;2

    Article  Google Scholar 

  • Kobayashi S, Kagaya T (2005) Hot spots of leaf breakdown within a headwater stream reach: comparing breakdown rates among litter patch types with different macroinvertebrate assemblages. Freshw Biol 50:921–929. doi:10.1111/j.1365-2427.2005.01371.x

    Article  Google Scholar 

  • Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605. doi:10.1016/j.baae.2007.11.003

    Article  Google Scholar 

  • López ES, Felpeto N, Pardo I (1997) Comparisons of methods to study the processing of Alnus glutinosa and Eucalyptus globulus leaves in a forested headwater stream. Limnetica 13:13–18

    Google Scholar 

  • López ES, Pardo I, Felpeto N (2001) Seasonal differences in green leaf breakdown and nutrient content of deciduous and evergreen tree species and grass in a granitic headwater stream. Hydrobiol 464:51–61. doi:10.1023/A:1013903500888

    Article  Google Scholar 

  • Loreau M et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–880. doi:10.1126/science.1064088

    Article  CAS  PubMed  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York

    Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi:10.2307/1936780

    Article  CAS  Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt Publishing Company, Dubuque, Iowa, USA

    Google Scholar 

  • Molinero J, Pozo J, González E (1996) Litter breakdown in streams of the Agüera catchment: influence of dissolved nutrients and land use. Freshw Biol 36:745–756. doi:10.1046/j.1365-2427.1996.00125.x

    Article  Google Scholar 

  • Moody EK, Sabo JL (2013) Crayfish impact desert river ecosystem function and litter-dwelling invertebrate communities through association with novel detrital resources. PLoS One 8(5):e63274. doi:10.1371/journal.pone.0063274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pardo I, Álvarez M (2006) Comparison of resource and consumer dynamics in Atlantic and Mediterranean streams. Limnetica 25:271–286

    Google Scholar 

  • Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshw Biol 4:343–368. doi:10.1111/j.1365-2427.1974.tb00103.x

    Article  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620. doi:10.2307/1312990

    Article  Google Scholar 

  • Richardson JS (1991) Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology 72:873–887. doi:10.2307/1940589

    Article  Google Scholar 

  • Richardson JS (1992) Coarse particulate detritus dynamics in small, montane streams of southwestern British Columbia. Can J Fish Aquat Sci 49:337–346. doi:10.1139/f92-038

    Article  Google Scholar 

  • Richardson JS (2001) Life cycle phenology of common detritivores from a temperate rainforest stream. Hydrobiol 455:87–95. doi:10.1023/A:1011943532162

    Article  Google Scholar 

  • Richardson JS, Bilby RE, Bondar CA (2005) Organic matter dynamics in small streams of the Pacific Northwest. J Am Water Res Assoc 41:921–934. doi:10.1111/j.1752-1688.2005.tb03777.x

    Google Scholar 

  • Richardson JS, Zhang Y, Marczak LB (2010) Resource subsidies across the land-freshwater interface and responses in recipient communities. River Res Appl 26:55–66. doi:10.1002/rra.1283

    Article  Google Scholar 

  • Samuels CL, Drake JA (1997) Divergent perspectives on community convergence. Trends Ecol Evol 12:427–432

    Article  CAS  PubMed  Google Scholar 

  • Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Stout RJ, Taft WH (1985) Growth patterns of a chironomid shredder on fresh and senecescent tag alder leaves in two Michigan streams. J Freshw Ecol 2:147–153. doi:10.1080/02705060.1985.9665103

    Article  Google Scholar 

  • Thompson RM, Townsend CR (2003) Impacts on stream food webs of native and exotic forest: an intercontinental comparison. Ecology 84:145–161. doi:10.1890/0012-9658(2003)084[0145:IOSFWO]2.0.CO;2

    Article  Google Scholar 

  • Townsend CR, Hildrew AG (1994) Species traits in relation to habitat templet for river systems. Freshw Biol 31:265–275. doi:10.1111/j.1365-2427.1994.tb01740.x

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Wallace JB, Wbester JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41:115–139

    Article  CAS  PubMed  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594. doi:10.1146/annurev.es.17.110186.003031

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gregory Crutsinger and two anonymous referees for providing many important insights and comments on the ideas presented in the manuscript. This study has been supported by the research project XUGA29106A96 of Xunta de Galicia and by the Forest Sciences Program of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, L., Pardo, I. & Richardson, J.S. A cross-continental comparison of stream invertebrate community assembly to assess convergence in forested headwater streams. Aquat Sci 76, 29–40 (2014). https://doi.org/10.1007/s00027-013-0308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0308-5

Keywords

Navigation