Skip to main content

Advertisement

Log in

Oligotrophication from wetland epuration alters the riverine trophic network and carrying capacity for fish

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Submerged aquatic vegetation (SAV) constitutes a major component of fish habitat, providing support for epiphytes and invertebrates as well as shelter from predators. The effects of wetland epuration from a mesotrophic to a nearly oligotrophic state were examined over a 15 km long reach of the St. Lawrence River under the direct influence of major farmland tributaries. We hypothesized that the nutrient-enriched zone would support a higher biomass of SAV, epiphytes, macroinvertebrates and fish than the nitrogen-deficient epurated zone located downstream of the wetland. Predictions included that the enriched habitat would support a richer fish assemblage, with higher biomass and growth of juvenile yellow perch than found in the epurated zone. Results supported these hypotheses, demonstrating the chain of effects of nutrient reduction on the biomass of SAV (fourfold drop), invertebrate prey (ninefold), small (threefold) and large (1.5-fold) fish between the two zones. In addition to the reduction in SAV biomass, the replacement of filamentous chlorophytes by benthic mats of filamentous cyanobacteria in the epurated zone resulted in a less complex 3-D habitat structure and a low invertebrate availability for fish. Oligotrophication by wetland epuration exerted negative effects on fish habitat quality, food quantity and availability, with an impairment of juvenile perch growth and recruitment. A generalized model of the changes in habitat carrying capacity occurring with epuration (oligotrophication) or eutrophication is presented, with examples of other aquatic systems in which strong linkages between trophic status, SAV, invertebrates and fish productivity were also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Public Health Association (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington

    Google Scholar 

  • Bachand PA, Horne AJ (1999) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol Eng 14:17–32

    Article  Google Scholar 

  • Basu BK, Kalff J, Pinel-Alloul B (2000) The influence of macrophytes beds on plankton communities and their export from fluvial lakes in the St. Lawrence River. Freshw Biol 45:373–382

    Article  Google Scholar 

  • Craig JF (2000) Percids fishes systematics ecology and exploitation. Blackwell Sciences, Oxford

    Google Scholar 

  • Crivelli AJ (1983) The destruction of aquatic vegetation by carp. Hydrobiologia 106:37–41

    Article  Google Scholar 

  • CSL 1996 St. Lawrence Centre (1996) Synthesis report on the State of the St. Lawrence. Vol I: St. Lawrence River ecosystem. Environment Canada—Quebec Region, Environment Conservation Branch and Éditions Multimondes, Montreal. Collection “Bilan Saint-Laurent”. ISBN: 2-921146-25-8

  • Downing JA, Cyr H (1985) The quantitative estimation of epiphytic invertebrate populations. Can J Fish Aquat Sci 42:1570–1579

    Article  Google Scholar 

  • Egertson CJ, Downing JA (2004) Relationship of fish catch and composition to water quality in a suite of agriculturally eutrophic lakes. Can J Fish Aquat Sci 61:1784–1796

    Article  Google Scholar 

  • Environment Canada (2005) Manuel des méthodes d’analyses (annexe B). Environment Canada, Quebec Region, Scientific and Technical Services Section. St. Lawrence Centre, Montreal

    Google Scholar 

  • Evans DO, Henderson BA, Bax NJ, Marshall TR, Oglesby RT, Christie WJ (1987) Concepts and methods of community ecology applied to freshwater fisheries management. Can J Fish Aquat Sci 44:448–470

    Article  Google Scholar 

  • Fausch KD, Lyons J, Karr JR, Angermeir PL (1990) Fish communities as indicators of environmental degradation. Am Fish Soc Symp 8:123–144

    Google Scholar 

  • Fishbase (2008) A global information system on fishes. Available at http://www.fishbase.org/search.php (Consutation June 2010)

  • Fortin R, Magnin E (1972) Quelques aspects qualitatifs et quantitatifs de la nourriture des perchaudes, Perca flavescens (Mitchill), de la Grande Anse de l’Ile Perrot, au lac Saint-Louis. Ann Hydrobiol 3:79–91

    Google Scholar 

  • Gerdeaux D, Anneville O, Hefti D (2006) Fishery changes during re-oligotrophication in 11 peri-alpine Swiss and French lakes over the past 30 years. Acta Oecologia 30:161–167

    Article  Google Scholar 

  • Gido KB, Dodds WK, Eberle ME (2010) Retrospective analysis of fish community change during a half-century of landuse and flow changes. J N Am Benthol Soc 29:970–987

    Article  Google Scholar 

  • Glémet H, Rodriguez MA (2007) Short-term growth (RNA/DNA ratio) of yellow perch (Perca flavescens) in relation to environmental influences and spatio-temporal variation in a shallow fluvial lake. Can J Fish Aquat Sci 64:1646–1655

    Article  Google Scholar 

  • Guénette S, Mailhot Y, McQuinn I, Lamoureux P, Fortin R (1994) Paramètres biologiques, exploitation commerciale et modélisation de la population de Perchaude (Perca flavescens) du lac Saint-Pierre. Ministère de l’Environnement et de la Faune et Université du Québec à Montréal, Québec

  • Hann BJ, Goldsborough LG (1997) Responses of a prairie wetland to press and pulse additions of inorganic nitrogen and phosphorus: invertebrate community structure and interactions. Arch Hydrobiol 140:169–194

    Google Scholar 

  • Hanson MA, Butler MG (1994) Responses of plankton, turbidity and macrophytes to biomanipulation in a shallow prairie lake. Can J Fish Aquat Sci 51:1180–1188

    Article  Google Scholar 

  • Hargeby A, Andersson G, Blindow I, Johansson S (1994) Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279(280):83–90

    Article  Google Scholar 

  • Hargeby A, Blom H, Blindow I, Andersson G (2005) Increased growth and recruitment of piscivorous perch, Perca fluviatilis during a transient phase of expanding submerged vegetation in a shallow lake. Freshw Biol 50:2053–2062

    Article  Google Scholar 

  • Heck KL Jr, Orth RJ (2006) Predation in seagrass beds. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology, and conservation. Springer, Netherlands, pp 537–550

    Google Scholar 

  • Hecky RE, Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Benthol Soc 14:631–653

    Article  Google Scholar 

  • Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285–1293

    Article  CAS  Google Scholar 

  • Hudon C (2004a) Managing St. Lawrence River discharge in times of climatic uncertainty: how water quantity affects wildlife, recreation and the economy. Transactions of the 69th North American Wildlife and Natural Resources Conference, pp 165–181

  • Hudon C (2004b) Shift in wetland composition and biomass following low-level episodes in the St. Lawrence River: looking into the future. Can J Fish Aquat Sci 61:603–617

    Article  Google Scholar 

  • Hudon C, Carignan R (2008) Cumulative impacts of hydrology and human activities on water quality in the St. Lawrence River (Lake Saint-Pierre, Quebec, Canada). Can J Fish Aquat Sci 65:1165–1180

    Article  CAS  Google Scholar 

  • Hudon C, Lalonde S (1998) Caractérisation de la biomasse et teneur en métaux des herbiers du Saint-Laurent (1993–1996). Sci Tech Rep ST-174 (Environment Canada, Quebec Region, Environmental Conservation, St. Lawrence Centre, Montreal)

  • Hudon C, Cattaneo A, Gagnon P (2009) Epiphytic cyanobacterium Gloeotrichia pisum as an indicator of nitrogen depletion. Aquat Microb Ecol 57:191–202

    Article  Google Scholar 

  • Hudon C, Armellin A, Gagnon P, Patoine A (2010) Variations of water temperature and level in the St. Lawrence River (Quebec, Canada): effects on three common fish species. Hydrobiologia 647:145–161

    Article  Google Scholar 

  • Huss M, Byström P, Strand A, Eriksson L-O, Persson L (2008) Influence of growth history on the accumulation of energy reserves and winter mortality on young fish. Can J Fish Aquat Sci 65:2149–2156

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christofferson K (1998) The structuring role of submerged macrophytes in lakes. Springer, New York

    Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218

    Article  CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens K, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Noges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771

    Article  CAS  Google Scholar 

  • Karr JR, Fausch KD, Angermeir PL, Yant PR, Schlosser IJ (1986) Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey, Special Publication 5, Champaign

  • Keast A, Parker J, Turnbull D (1978) Nearshore fish habitat utilization and species association in Lake Opinicon (Ontario, Canada). Environ Biol Fishes 3:173–183

    Article  Google Scholar 

  • Kraufvelin P, Salonius S, Christie H, Moy FE, Karez R, Pedersen M (2006) Eutrophication-induced changes in benthic algae affect behaviour and fitness of the marine amphipod Gammarus locusta. Aquat Bot 84:199–209

    Article  Google Scholar 

  • La Violette N, Fournier D, Dumont P, Mailhot Y (2003) Caractérisation des communautés de poissons et développement d’un indice d’intégrité biotique pour le fleuve Saint-Laurent, 1995–1997. Société de la faune et des parcs du Québec, Direction de la recherche sur la faune, QC

  • Lougheed VL, Crosbie B, Chow-Fraser P (1998) Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Can J Fish Aquat Sci 55:1189–1197

    Article  Google Scholar 

  • Lougheed VL, Theysmeyer TS, Smith T, Chow-Fraser P (2004) Carp exclusion, food-web interactions, and the restoration of Cootes Paradise Marsh. J Gt Lakes Res 30:44–57

    Article  Google Scholar 

  • Ludsin SA, Kershner MW, Blocksom KA, Knight RL, Stein RA (2001) Life after death in Lake Erie: nutrient controls drive fish species richness, rehabilitation. Ecol Appl 11:731–746

    Article  Google Scholar 

  • Magnan P (2002) Avis scientifique sur l’état des stocks de perchaudes au lac Saint-Pierre, les indicateurs biologiques utilisés pour effectuer son suivi et la pertinence de protéger la période de fraye de façon partielle ou totale. Chaire de recherche en écologie des eaux douces, Université du Québec à Trois-Rivières

  • Magnan P, Mailhot Y, Dumont P (2008) État du stock de perchaude du lac Saint-Pierre en 2007 et efficacité du plan de gestion de 2005. Comité aviseur sur la gestion de la perchaude du lac Saint-Pierre, Université du Québec à Trois-Rivières et Ministère des Ressources naturelles et de la Faune du Québec

  • Mailhot Y, Dumont P (2003) Another yellow perch population decline in the 1990s: the Lake St. Pierre Case Study, St. Lawrence River, Quebec. In: Barry TP, Malison JA (eds) Proceedings of Percis III: The Third International Percid Fish Symposium. University of Wisconsin Sea Grant Institute, Madison, pp 135–136

    Google Scholar 

  • Manca M, Ruggiu D (1998) Consequences of pelagic food-web changes during a long-term lake oligotrophication process. Limnol Oceanogr 43:1368–1373

    Article  Google Scholar 

  • Ministère de l’Environnement (2003) Synthèse des informations environnementales disponibles en matière agricole au Québec. Direction des politiques du secteur agricole, ministère de l’Environnement, Québec, Envirodoq ENV/2003/0025

  • Morrice JA, Kelly JR, Trebitz AS, Cotter AM, Knuth ML (2004) Temporal dynamics of nutrients (N and P) and hydrology in a Lake Superior coastal wetland. J Gt Lakes Res 30:82–96

    Article  Google Scholar 

  • Moss B (1990) Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiol 200/201(201):367–377

    Article  Google Scholar 

  • Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Beih Ergeb Limnol 14:14–36

    CAS  Google Scholar 

  • O’gorman R, Burnett JAD (2001) Fish community dynamics in Northeastern Lake, Ontario, with emphasis on the growth and reproductive success of yellow perch (Perca flavescens) and white perch (Morone americana), 1978 to 1997. J Gt Lakes Res 27:367–383

    Article  Google Scholar 

  • Oglesby RT (1977) Relationships of fish yield to lake phytoplankton standing crop, production, and morphoedaphic factors. J Fish Res Board Can 34:2255–2270

    Article  Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545

    Article  Google Scholar 

  • Paradis Y, Mingelbier M, Brodeur P, Magnan P (2008) Comparisons of catch and precision of pop-nets, push-nets and seines for sampling larval and juvenile yellow perch. N Am J Fish Manag 28:1554–1562

    Article  Google Scholar 

  • Persson L, Diehl S, Johansson L, Andersson G, Hamrin SF (1991) Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. J Fish Biol 38:281–293

    Article  Google Scholar 

  • Post JR, Evans DO (1989) Size-dependent overwinter mortality of young-of-the-year yellow perch (Perca flavescens): laboratory, in situ enclosure, and field experiments. Can J Fish Aquat Sci 46:1958–1968

    Article  Google Scholar 

  • Reavie ED, Smol JP, Carignan R, Lorrain S (1998) Diatom paleolimnology of two fluvial lakes in the St Lawrence River: a reconstruction of environmental changes during the last century. J Phycol 34:446–456

    Article  Google Scholar 

  • Rooney N, Kalff J (2003) Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial production. Ecosystems 6:797–807

    Article  CAS  Google Scholar 

  • Sass GG, Gille CM, Hinkle JT, Kitchell JF (2006) Whole-lake influences of littoral structural complexity and prey body morphology on fish predator–prey interactions. Ecol Freshw Fish 15:301–308

    Article  Google Scholar 

  • Saunders DL, Kalff J (2001) Nitrogen retention in wetlands, lakes and rivers. Hydrobiology 443:205–212

    Article  CAS  Google Scholar 

  • Schriver P, Bogestraand J, Jeppesen E, Sondergaard M (1995) Impact of submerged macrophytes on fish–zooplankton–phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshw Biol 33:255–270

    Article  Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Galt House Publications Ltd., Oakville. ISBN: 0-9690653-9-6 xix. Reprinted in 1998

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Poll 100:179–196

    Article  CAS  Google Scholar 

  • Squires MM, Lesack LFW, Hecky RE, Guildford SJ, Ramlal P, Higgins SN (2009) Primary production and carbon dioxide metabolic balance of a lake-rich arctic river floodplain: partitioning of phytoplankton, epipelon, macrophyte, and epiphyton production among lakes on the Mackenzie Delta. Ecosystems 12:853–872

    Article  CAS  Google Scholar 

  • Stockner JG (1998) Global warming, picocyanobacteria and fisheries decline: is there a connection? In: Piccazzo E (ed) Proceedings Atti. del 12th Congress dell’AIOL. Vol II. Rome, Italy, pp 29–37

  • Stockner JG, Rydin E, Hyenstrand P (2000) Cultural oligotrophication: causes and consequences for fisheries resources. Fisheries 25:7–14

    Article  Google Scholar 

  • Svedin C, Bastviken SK, Tonderski KS (2008) Cold season nitrogen removal in a highloaded free water surface wetland with emergent vegetation. In: Vymazal J (ed) Wastewater treatment, plant dynamics and management 223 in constructed and natural wetlands, Chapter 20. Springer, New York

  • Tourville Poirier A-M (2009) Biomass and relative composition of macroinvertebrate communities associated to different habitats in Lake Saint-Pierre (Québec, Canada). MSc thesis, Université de Montréal, Montréal

  • Tourville Poirier A-M, Cattaneo A, Hudon C (2010) Benthic cyanobacteria and filamentous chlorophytes affect macroinvertebrate assemblages in a large fluvial lake. J N Am Benthol Soc 29:737–749

    Article  Google Scholar 

  • Vis C, Hudon C, Carignan R, Gagnon P (2007) Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different water-level conditions. Ecosystems 10:293–310

    Article  Google Scholar 

  • Vis C, Cattaneo A, Hudon C (2008) Shift from chlorophytes to cyanobacteria in benthic macroalgae along a gradient of nitrate depletion. J Phycol 44:38–44

    Article  CAS  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  PubMed  CAS  Google Scholar 

  • Welcomme RL (2000) Fish biodiversity in floodplains and their associated rivers. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation. Leiden, Backhuys, pp 61–87

    Google Scholar 

  • Wu L, Culver DA (1992) Ontogenic diel shift in Lake Erie age-0 yellow perch (Perca flavescens): a size-related response to zooplankton density. Can J Fish Aquat Sci 49:1932–1937

    Article  Google Scholar 

  • Wu L, Xie P, Dal M, Wang J (1997) Effects of silver carp density on zooplankton and water quality: implications for eutrophic lakes in China. J Freshwat Ecol 12:437–444

    Article  CAS  Google Scholar 

  • Yin Y, Winkelman JS, Langrehr HA (2000) Long term resource monitoring program procedures: aquatic vegetation monitoring. US Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI. LTRMP 95–P002–7

Download references

Acknowledgments

The authors thank Nicolas Auclair, Rémi Bacon, Virginie Boivin, Yves Chagnon, Chantal Côté, Sylvain Desloges, Roger Gladu, Catherine Greaves, Charles Jutras, Jean Leclerc, Huguette Massé, Rémy Morrissette, Jean Novotni, and Yves Robitaille for their conscientious work in the field and in the laboratory. Invertebrate sorting was done with the help of summer students David Lévesque, James Bernier and Phoebe Ho. Authors also appreciated the advice from Ginette Méthot and Louise Cloutier regarding invertebrate identification. Water chemistry was analysed by the staff members of the St. Lawrence Centre (LEEQ- Environment Canada). Maps were designed by François Boudreault (Environment Canada). The constructive comments of E Jeppesen and of anonymous reviewers on a previous version of the manuscript are acknowledged with thanks. Funding was provided by the Natural Sciences and Engineering Research Council of Canada, the St. Lawrence Action Plan, and the Ministère des Ressources Naturelles et de la Faune du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Hudon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudon, C., Cattaneo, A., Tourville Poirier, AM. et al. Oligotrophication from wetland epuration alters the riverine trophic network and carrying capacity for fish. Aquat Sci 74, 495–511 (2012). https://doi.org/10.1007/s00027-011-0243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-011-0243-2

Keywords

Navigation