Skip to main content
Log in

Effects of pollen leaching and microbial degradation on organic carbon and nutrient availability in lake water

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Nutrient fluxes across terrestrial-aquatic boundaries and their subsequent integration into lake nutrient cycles are currently a major topic of aquatic research. Although pollen represents a good substrate for microorganisms, it has been neglected as a terrestrial source of organic matter in lakes. In laboratory experiments, we incubated pollen grains of Pinus sylvestris in water of lakes with different trophy and pH to estimate effects of pollen input and its subsequent microbial degradation on nutrient dynamics. In this ex situ experiment, we measured concentrations of organic carbon, phosphorus and nitrogen in the surrounding water as well as microbial dynamics (bacteria and fungal sporangia) at well-controlled conditions. Besides leaching, chemical and microbial decomposition of pollen was strongest within the first week of incubation. This led to a marked increase of soluble reactive phosphorus and total dissolved nitrogen (up to 0.04 and 1.5 mg L−1, respectively, after 5 days of incubation) in the ambient water. In parallel, pollen grains were rapidly colonized by heterotrophic bacteria and aquatic fungi. Leaching and microbial degradation of pollen accounted for ≥80, ≥40, ≥50% for organic C, N and P, respectively, and did not significantly differ among water samples from the studied lakes. Thus, pollen introduces high amounts of bio-available terrestrial organic matter and nutrients into surface waters within a short time. A rough calculation on P input into oligotrophic Lake Stechlin indicates that pollen plays an important ecological role in nutrient cycling of temperate lakes. This requires further attention in aquatic ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allgaier M, Grossart H-P (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128

    Article  Google Scholar 

  • Andersson FA (2005) Coniferous forests. Included in series Ecosystems of the World, 6. Elsevier, Amsterdam

  • Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102

    Article  Google Scholar 

  • Burkert U, Ginzel G, Babenzien HD, Koschel R (2005) The hydrogeology of a catchment area and an artificially divided dystrophic lake—consequences for the limnology of Lake Fuchskuhle. Biogeochemistry 71:225–246

    Article  Google Scholar 

  • Casper SJ, Krey L, Proft G (1985) Fallen leaves in Lake Stechlin. In: Casper SJ (ed) Lake Stechlin: a temperate oligotrophic lake. Dr W Junk Pub Co, Dordrecht pp 401–409

  • Cho YJ, Kim IS, Kim P, Lee EJ (2003) Deposition of airborne pine pollen in a temperate pine forest. Grana 42:178–182

    Article  Google Scholar 

  • Cole JJ, Caraco NF, Likens GE (1990) Short-range atmospheric transport—a significant source of phosphorus to an oligotrophic lake. Limnol Oceanogr 35:1230–1237

    Article  CAS  Google Scholar 

  • Cotner JB Jr, Wetzel RG (1992) Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnol Oceanogr 37:232–243

    Article  CAS  Google Scholar 

  • Currie DJ, Kalff J (1984) The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol Oceanogr 29:311–321

    Article  CAS  Google Scholar 

  • Czeczuga B, Muszyńska E (2001) Zoosporic fungi growing on gymnosperm pollen in water of varied trophic state. Pol J Environ Stud 10:89–94

    CAS  Google Scholar 

  • del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Article  Google Scholar 

  • Dittrich M, Koschel R (2002) Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469:49–57

    Article  CAS  Google Scholar 

  • Dittrich M, Dittrich T, Sieber I, Koschel R (1997) A balance analysis of phosphorus elimination by artificial calcite precipitation in a stratified hardwater lake. Water Res 31:237–248

    Article  CAS  Google Scholar 

  • Doskey PV, Ugoagwu BJ (1989) Atmospheric deposition of macronutrients by pollen at a semi-remote site in northern Wisconsin. Atmos Environ 23:2761–2766

    Article  CAS  Google Scholar 

  • Findlay SEG (2003) Bacterial response to variation in dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press/Elsevier Science, New York, pp 363–379

    Google Scholar 

  • Fischer H (2003) The role of biofilms in the uptake and transformation of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press/Elsevier Science, New York, pp 285–313

    Google Scholar 

  • Gasith A, Hasler AD (1976) Airborne litterfall as a source of organic-matter in lakes. Limnol Oceanogr 21:253–258

    Article  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Giesecke T, Fontana SL (2008) Revisiting pollen accumulation rates from Swedish lake sediments. The Holocene 18:293–305

    Article  Google Scholar 

  • Giesecke T, Fontana SL, van der Knaap W, Pardoe H, Pidek I (2010) From early pollen trapping experiments to the Pollen Monitoring Programme. Veget Hist Archaeobot 19:247–258

    Article  Google Scholar 

  • Goldstein S (1960) Degradation of pollen by phycomycetes. Ecology 41:543–545

    Article  Google Scholar 

  • Graham MD, Vinebrooke RD, Turner MDM (2006) Coupling of boreal forests and lakes: effects of conifer pollen on littoral communities. Limnol Oceanogr 51:1524–1529

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhadt M (1983) Methods of seawater analysis, 2nd edn. Wiley, VCH

    Google Scholar 

  • Greenfield LG (1999) Weight loss and release of mineral nitrogen from decomposing pollen. Soil Biol Biochem 31:353–361

    Article  CAS  Google Scholar 

  • Grossart H-P, Simon M (1993) Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics, and microbial dynamics in Lake Constance. Limnol Oceanogr 38:532–546

    Article  Google Scholar 

  • Grossart H-P, Kiorboe T, Tang KW, Ploug H (2003) Bacterial colonization of particles: growth and interactions. Appl Environ Microbiol 69:3500–3509

    Article  PubMed  CAS  Google Scholar 

  • Grossart H-P, Kiorboe T, Tang KW, Allgaier M, Yam EM, Ploug H (2006) Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquat Microb Ecol 42:19–26

    Article  Google Scholar 

  • Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861

    Article  PubMed  Google Scholar 

  • Heinken T (2008) Die natürlichen Kiefernstandorte Deutschlands und ihre Gefährdung. In: Nordwestdeutsche Forstliche Versuchsanstalt (Hrsg.) Die Waldkiefer: Fachtagung zum Baum des Jahres 2007. Universitätsverlag Göttingen pp 19–40

  • Hicks S, Tinsley H, Huusko A, Jensen C, Hattestrand M, Gerasimides A, Kvavadze EDO (2001) Some comments on spatial variation in arboreal pollen deposition: first records from the Pollen Monitoring Programme (PMP). Rev Palaeobot Palynol 117:183–194

    Article  Google Scholar 

  • Hutchison LJ, Barron GL (1997) Parasitism of pollen as a nutritional source for lignicolous Basidiomycota and other fungi. Mycol Res 101:191–194

    Article  Google Scholar 

  • Kasprzak P (1993) The use of an artificially divided bog lake in food-web studies. Verh Int Ver Theo Angew Limnol 25:652–656

    Google Scholar 

  • Kerrn-Jespersen JP, Henze M (1993) Biological phosphorus uptake under anoxic and aerobic conditions. Water Res 27:617–624

    Article  CAS  Google Scholar 

  • Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28:255–271

    Article  CAS  Google Scholar 

  • Koff T (2001) Pollen influx into Tauber traps in Estonia in 1997–1998. Rev Palaeobot Palynol 117:53–62

    Article  Google Scholar 

  • Kominkova D, Kuehn KA, Büsing N, Steiner D, Gessner MO (2000) Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat Microb Ecol 22:271–282

    Article  Google Scholar 

  • Koroleff F (1976) Determination of phosphorus. In: Grasshoff K (ed) Methods in seawater analysis. Verlag Chemie, Weinheim, pp 125–131

  • Koschel R (1995) Manipulation of whole-lake ecosystems and long-term limnological observations in the Brandenburg–Mecklenburg Lake District, Germany. Int Rev Gesamten Hydrobiol 80:507–518

    Article  CAS  Google Scholar 

  • Koschel R, Gonsiorczyk T, Krienitz L, Padisak J, Scheffler W (2002) Primary production of phytoplankton and nutrient metabolism during and after thermal pollution in a deep, oligotrophic lowland lake (Lake Stechlin, Germany). Verh Int Ver Theo Angew Limnol 28:569–575

    Google Scholar 

  • Lampert W, Sommer U (1993) Limnoökologie, 1st edn. Thieme Verlag, Stuttgart

    Google Scholar 

  • Lee EJ, Booth T (2003) Macronutrient input from pollen in two regenerating pine stands in southeast Korea. Ecol Res 18:423–430

    Article  Google Scholar 

  • Lee EJ, Kenkel N, Booth T (1996) Atmospheric deposition of macronutrients by pollen in the boreal forest. Ecoscience 3:304–309

    Google Scholar 

  • Moran MA, Hodson RE (1994) Support of bacterioplankton production by dissolved humic substances from three marine environments. Mar Ecol Prog Ser 110:241–247

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Prentice I (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–86

    Article  Google Scholar 

  • Richerson PJ, Moshiri GA, Godshalk GL (1970) Certain ecological aspects of pollen dispersion in Lake Tahoe (California-Nevada). Limnol Oceanogr 15:149–153

    Google Scholar 

  • Robledo-Arnuncio JJ (2011) Wind pollination over mesoscale distances: an investigation with Scots pine. New Phytol 190:222–233

    Article  Google Scholar 

  • Scherer T (2004) Wälder. In: Lütkepohl M, Flade M (eds) Das Naturschutzgebiet Stechlin. Natur & Text, Rangsdorf, pp 38–45

  • Schmithüsen J (1961) Allgemeine Vegetationsgeographie, 2nd edn. Walter de Gruyter & Co, Berlin

    Google Scholar 

  • Scott RJ (1994) Pollen exine: the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead AD (eds) Molecular and cellular aspects of plant reproduction. University Press, Cambridge, pp 49–81

    Chapter  Google Scholar 

  • Shaw G (1971) The chemistry of sporopollenin. In: Brooks J, Grant PR, Muir M, van Gijzel P, Shaw G (eds) Sporopollenin. Academic Press, New York, pp 305–348

    Google Scholar 

  • Sitte P, Ziegeler H, Ehrendorfer F, Bresinky A (1998) Lehrbuch der Botanik, begr. Strasburger E, 34th edn. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology biochemistry management. Springer, Berlin

  • Stark N (1972) Nutrient cycling pathways and litter fungi. Bioscience 22:355–360

    Article  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Fisheries reseach board of Canada, Ottawa

    Google Scholar 

  • Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244

    Article  Google Scholar 

  • Tanaka T, Rassoulzadegan F, Thingstad TF (2004) Orthophosphate uptake by heterotrophic bacteria, cyanobacteria, and autotrophic nanoflagellates in Villefranche Bay, northwestern Mediterranean: Vertical, seasonal, and short-term variations of the competitive relationship for phosphorus. Limnol Oceanogr 49:1063–1072

    Article  CAS  Google Scholar 

  • Thingstad TF, Bellerby RGJ, Bratbak G, Borsheim KY, Egge JK, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa RA, Skjoldal EF, Tanaka T, Thyrhaug R, Topper B (2008) Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455:387–390

    Article  PubMed  CAS  Google Scholar 

  • Tranvik LJ (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb Ecol 16:311–322

    Article  CAS  Google Scholar 

  • Tranvik LJ (1992) Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229:107–114

    Article  CAS  Google Scholar 

  • Tranvik LJ (1998) Degradation of dissolved organic matter in humic waters by bacteria. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances: ecology and biogeochemistry. Springer, Berlin, pp 259–283

    Google Scholar 

  • Tranvik LJ, Höfle MG (1987) Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl Environ Microbiol 53:482–488

    PubMed  CAS  Google Scholar 

  • Uehlinger U (1986) Bacteria and phosphorus regeneration in lakes. An experimental study. Hydrobiologia 135:197–206

    Article  CAS  Google Scholar 

  • van der Knaap W, van Leeuwen J, Svitavská-Svobodová H, Pidek I, Kvavadze E, Chichinadze M, Giesecke T, Kaszewski B, Oberli B, Kalnina L, Pardoe H, Tinner W, Ammann B (2010) Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. Veget Hist Archaeobot 19:285–307

    Article  Google Scholar 

  • von Wachenfeldt E, Bastviken D, Tranvik LJ (2009) Microbially induced flocculation of allochthonous dissolved organic carbon in lakes. Limnol Oceanogr 54:1811–1818

    Article  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594

    Article  Google Scholar 

  • Webster EA, Tilston EL, Chudek JA, Hopkins DW (2008) Decomposition in soil and chemical characteristics of pollen. Eur J Soil Sci 59:551–558

    Article  CAS  Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological Analysis, 2nd edn. Springer, Berlin

    Google Scholar 

  • Wiermann R, Gubatz S (1992) Pollen wall and sporopollenin. In: Russell SD, Dumas C (eds) Sexual reproduction in flowering plants. Academic Press, New York pp 35–72

  • Wurzbacher CM, Bärlocher F, Grossart H-P (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Elke Mach and Uta Mallock for technical assistance. Thomas Mehner and the participants of the workshop “Scientific Writing” at IGB provided helpful comments on an earlier version of the manuscript. Chemical and limnological monitoring data were provided by IGB, Dept. Limnology of Stratified Lakes in Neuglobsow. This study has been financially supported by a grant of the German Research Foundation (DFG, GR 1540/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Grossart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösel, S., Rychła, A., Wurzbacher, C. et al. Effects of pollen leaching and microbial degradation on organic carbon and nutrient availability in lake water. Aquat Sci 74, 87–99 (2012). https://doi.org/10.1007/s00027-011-0198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-011-0198-3

Keywords

Navigation