Skip to main content
Log in

Bacteria and phosphorus regeneration in lakes. An experimental study

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aerobic decomposition of the green alga Chlamydomonas reinhardii by a mixed population of lake bacteria was studied in batch and chemostat cultures. Bacterial chemostats were supplied with continuously heatkilled algae. The dead algae rapidly released most of their phosphorus as SRP. In the batch experiments bacteria acted as consumers of the released algal phosphorus. This phosphorus uptake was dependent on the C:P ratio of the algae. During the death phase of the bacteria most of the bacterial phosphorus itself was released. The continuous supply of energy in form of dead algae in the chemostat experiments prevented the death phase of the bacteria and thus any net regeneration of phosphorus. The influence of the C:P stoichiometry of algae and bacteria on the regeneration of algal phosphorus is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloesch, J., P. Stadelmann & H. Bührer, 1977. Primary production, mineralization and sedimentation in the euphotic zone of two Swiss lakes. Limnol. Oceanogr. 22: 51–526.

    Google Scholar 

  • Bührer, H., 1979. Der Einfluss von Kohlenwasserstoffen auf die Oekologie der Bakterien im aeroben Seesediment. Schweiz. Z. Hydrol. 41: 315–355.

    Google Scholar 

  • Bowen, H. J. M., 1966. Trace elements in biochemistry. Academic Press, N.Y.

    Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    Google Scholar 

  • DePinto, J. V. & F. H. Verhoff, 1977. Nutrient regeneration from aerobic decomposition of green algae. Envir. Sci. Technol. 11: 371–377.

    Google Scholar 

  • Dicks, J. W. & D. W. Tempest, 1966. The influence of temperature and growth rate on the quantitative relationship between potassium, magnesium, phophorus and ribonucleic acid of Aerobacter aerogenes growing in a chemostat. J. gen. Microbiol. 45: 547–557.

    Google Scholar 

  • Foree, E. G., W. J. Jewell & P. L. McCarty, 1970. The extent of nitrogen and phosphorus regeneration from decomposing algae. In S. H. Jenkins (ed.), Advances in Water Pollution Research 2. Pergamon Press, Oxford: III-27/1–27/15.

    Google Scholar 

  • Gächter, R. & J. Bloesch, 1985. Seasonal and vertical variation of the C/P ratio in suspended and settling seston of lakes. Hydrobiologia 128: 193–200.

    Article  Google Scholar 

  • Golterman, H. L., 1964. Mineralization of algae under sterile conditions or by bacterial break down. Verh. int. Ver. Limnol. 15: 544–548.

    Google Scholar 

  • Golterman, H. L., 1973. The role of phytoplankton in detritus formation. Mem. Inst. Ital. Idrobiol. 22 suppl.: 89–103.

    Google Scholar 

  • Hirsbrunner, M., 1981. Chemostatanlage zur kontinuierlichen Kultur von Algen. Schweiz. Z. Hydrol. 43: 370–376.

    Google Scholar 

  • Johannes, R. E., 1968. Nutrient regeneration in lakes and oceans. In M. R. Droop & E. J. F. Wood (eds), Advances in Microbiology of the the Sea, 1. Academic Press, Lond.: 120–132.

    Google Scholar 

  • Morowitz, H. J., 1968. Energy flow in Biology. Academic Press, N.Y.

    Google Scholar 

  • Overbeck, J., 1974. Microbiology and chemistry. Mitt. int. Ver. Limnol. 20: 198–228.

    Google Scholar 

  • Overbeck, J., 1977. Praktikumsanleitung für den Limnologie-Kurs, 7. Semester. Max Planck-Institut Plön, W. Germany: 27–29.

    Google Scholar 

  • Reichardt, W., 1971. Catalytic mobilization of phosphate in lake water and by Cyanophyta. Hydrobiologia 38: 377–394.

    Google Scholar 

  • Reichardt, W., 1978. Einführung in die Methoden der Gewässer-mikrobiologie. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Payne, W. J., 1970. Energy yields and growth of heterotrophs. Ann. Rev. Microbiol. 24: 17–52.

    Article  Google Scholar 

  • Peters, R. H. & F. H. Rigler, 1973. Phosphorus release by Daphnia. Limnol. Oceanogr. 18: 821–839.

    Google Scholar 

  • Plüss, S., 1978. Populationsdynamik der Bakterienflora im hocheutrophen Greifensee. Diplomarbeit, ETH-Zürich.

    Google Scholar 

  • Schlegel, H. G., 1969. Allgemeine Mikrobiologie. Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Staub, R., 1961. Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescencs D. C. Schweiz. Z. Hydrol. 23: 82–198.

    Google Scholar 

  • Stöckli, A., 1985a. The role of bacteria and algae in phosphorus regeneration using linked continuous cultures. Verh. int. Ver. Limnol. 22: 2773–2779.

    Google Scholar 

  • Stöckli, A., 1985b. Die Rolle der Bakterien in der Regeneration von Nährstoffen aus Algenexkreten und Autolyseprodukten. Doct. Thesis, Swiss Fed. Inst. Technol. (ETH), Zürich.

    Google Scholar 

  • Uehlinger, U., 1981. Experimentelle Untersuchungen zur Autökologie von Aphanizomenon flos-aque. Arch. Hydrobiol. Suppl. 60 (Algological Studies 28): 260–288.

    Google Scholar 

  • Vogler, P., 1965. Beiträge zur Phosphoranalytik in der Limnologie Fortschr. Wasserchemie Grenzgeb. 2: 109–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uehlinger, U. Bacteria and phosphorus regeneration in lakes. An experimental study. Hydrobiologia 135, 197–206 (1986). https://doi.org/10.1007/BF00006531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006531

Keywords

Navigation